Image Quality Assessment of Multi-Satellite Pan-Sharpening Approach: A Case Study using Sentinel-2 Synthetic Panchromatic Image and Landsat-8

Greetta Pinheiro, Ishfaq Hussain Rather, Aditya Raj, S. Minz, Sushil Kumar
{"title":"Image Quality Assessment of Multi-Satellite Pan-Sharpening Approach: A Case Study using Sentinel-2 Synthetic Panchromatic Image and Landsat-8","authors":"Greetta Pinheiro, Ishfaq Hussain Rather, Aditya Raj, S. Minz, Sushil Kumar","doi":"10.4108/eetsis.5496","DOIUrl":null,"url":null,"abstract":"INTRODUCTION: The satellite's physical and technical capabilities limit high spectral and spatial resolution image acquisition. In Remote Sensing (RS), when high spatial and spectral resolution data is essential for specific Geographic Information System (GIS) applications, Pan Sharpening (PanS) becomes imperative in obtaining such data. \nOBJECTIVES: Study aims to enhance the spatial resolution of the multispectral Landsat-8 (L8) images using a synthetic panchromatic band generated by averaging four fine-resolution bands in the Sentinel-2 (S2) images. \nMETHODS: Evaluation of the proposed multi-satellite PanS approach, three different PanS techniques, Smoothed Filter Intensity Modulation (SFIM), Gram-Schmidt (GS), and High Pass Filter Additive (HPFA) are used for two different study areas. The techniques' effectiveness was evaluated using well-known Image Quality Assessment Metrics (IQAM) such as Root Mean Square Error (RMSE), Correlation Coefficient (CC), Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS), and Relative Average Spectral Error (RASE). This study leveraged the GEE platform for datasets and implementation. \nRESULTS: The promising values were provided by the GS technique, followed by the SFIM technique, whereas the HPFA technique produced the lowest quantitative result. \nCONCLUSION: In this study, the spectral bands of the MS image’s performance show apparent variation with respect to that of the different PanS techniques used.","PeriodicalId":155438,"journal":{"name":"ICST Transactions on Scalable Information Systems","volume":" 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICST Transactions on Scalable Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.5496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

INTRODUCTION: The satellite's physical and technical capabilities limit high spectral and spatial resolution image acquisition. In Remote Sensing (RS), when high spatial and spectral resolution data is essential for specific Geographic Information System (GIS) applications, Pan Sharpening (PanS) becomes imperative in obtaining such data. OBJECTIVES: Study aims to enhance the spatial resolution of the multispectral Landsat-8 (L8) images using a synthetic panchromatic band generated by averaging four fine-resolution bands in the Sentinel-2 (S2) images. METHODS: Evaluation of the proposed multi-satellite PanS approach, three different PanS techniques, Smoothed Filter Intensity Modulation (SFIM), Gram-Schmidt (GS), and High Pass Filter Additive (HPFA) are used for two different study areas. The techniques' effectiveness was evaluated using well-known Image Quality Assessment Metrics (IQAM) such as Root Mean Square Error (RMSE), Correlation Coefficient (CC), Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS), and Relative Average Spectral Error (RASE). This study leveraged the GEE platform for datasets and implementation. RESULTS: The promising values were provided by the GS technique, followed by the SFIM technique, whereas the HPFA technique produced the lowest quantitative result. CONCLUSION: In this study, the spectral bands of the MS image’s performance show apparent variation with respect to that of the different PanS techniques used.
多卫星全色锐化方法的图像质量评估:使用哨兵-2 号合成全色图像和大地遥感卫星-8 号的案例研究
简介:卫星的物理和技术能力限制了高光谱和空间分辨率图像的获取。在遥感(RS)领域,当特定的地理信息系统(GIS)应用需要高空间和光谱分辨率数据时,平移锐化(PanS)就成为获取此类数据的当务之急。研究目的研究旨在利用哨兵-2(Sentinel-2,S2)图像中四个精细分辨率波段的平均值生成的合成全色波段,提高大地遥感卫星-8(Landsat-8,L8)多光谱图像的空间分辨率。方法:评估所提出的多卫星 PanS 方法,在两个不同的研究区域使用了三种不同的 PanS 技术:平滑滤波强度调制(SFIM)、格拉姆-施密特(GS)和高通滤波加法(HPFA)。使用众所周知的图像质量评估指标(IQAM),如均方根误差(RMSE)、相关系数(CC)、全球相对增量合成误差(ERGAS)和相对平均光谱误差(RASE),对这些技术的有效性进行了评估。本研究利用 GEE 平台进行数据集和实施。结果:GS 技术提供了有希望的数值,其次是 SFIM 技术,而 HPFA 技术产生的定量结果最低。结论:在本研究中,MS 图像的光谱波段性能与所使用的不同 PanS 技术的性能存在明显差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信