Micheal Saleab, Franz Sax, Johann Schumann, Florian Holzapfel
{"title":"Low-level memory and timing analysis of flight code for unmanned aerial systems","authors":"Micheal Saleab, Franz Sax, Johann Schumann, Florian Holzapfel","doi":"10.1007/s42401-024-00279-0","DOIUrl":null,"url":null,"abstract":"<div><p>The development of flight software for Unmanned Aerial Systems (UAS) is challenging due to the absence of an established development process defined by aerospace certification authorities. This research paper outlines our methods and tools for analyzing flight-critical UAS control software on the target hardware. We present our toolchain and methodology for evaluating the flight control computer stack, runtime memory, and timing characteristics. Additionally, we compare the performance of the flight control computer under various hardware and cache settings to justify, which hardware features should be enabled. The tools and processes employed in this research are deployable to any other development environment and are not restricted to the specific target hardware used in this paper.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 2","pages":"209 - 225"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42401-024-00279-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-024-00279-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The development of flight software for Unmanned Aerial Systems (UAS) is challenging due to the absence of an established development process defined by aerospace certification authorities. This research paper outlines our methods and tools for analyzing flight-critical UAS control software on the target hardware. We present our toolchain and methodology for evaluating the flight control computer stack, runtime memory, and timing characteristics. Additionally, we compare the performance of the flight control computer under various hardware and cache settings to justify, which hardware features should be enabled. The tools and processes employed in this research are deployable to any other development environment and are not restricted to the specific target hardware used in this paper.
期刊介绍:
Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering.
Potential topics include, but are not limited to:
Trans-space vehicle systems design and integration
Air vehicle systems
Space vehicle systems
Near-space vehicle systems
Aerospace robotics and unmanned system
Communication, navigation and surveillance
Aerodynamics and aircraft design
Dynamics and control
Aerospace propulsion
Avionics system
Opto-electronic system
Air traffic management
Earth observation
Deep space exploration
Bionic micro-aircraft/spacecraft
Intelligent sensing and Information fusion