Mapping non-monetary poverty at multiple geographical scales

Silvia De Nicolò, Enrico Fabrizi, A. Gardini
{"title":"Mapping non-monetary poverty at multiple geographical scales","authors":"Silvia De Nicolò, Enrico Fabrizi, A. Gardini","doi":"10.1093/jrsssa/qnae023","DOIUrl":null,"url":null,"abstract":"\n Poverty mapping is a powerful tool to study the geography of poverty. The choice of the spatial resolution is central as poverty measures defined at a coarser level may mask their heterogeneity at finer levels. We introduce a small area multi-scale approach integrating survey and remote sensing data that leverages information at different spatial resolutions and accounts for hierarchical dependencies, preserving estimates coherence. We map poverty rates by proposing a Bayesian Beta-based model equipped with a new benchmarking algorithm accounting for the double-bounded support. A simulation study shows the effectiveness of our proposal and an application on Bangladesh is discussed.","PeriodicalId":506281,"journal":{"name":"Journal of the Royal Statistical Society Series A: Statistics in Society","volume":" 116","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series A: Statistics in Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnae023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Poverty mapping is a powerful tool to study the geography of poverty. The choice of the spatial resolution is central as poverty measures defined at a coarser level may mask their heterogeneity at finer levels. We introduce a small area multi-scale approach integrating survey and remote sensing data that leverages information at different spatial resolutions and accounts for hierarchical dependencies, preserving estimates coherence. We map poverty rates by proposing a Bayesian Beta-based model equipped with a new benchmarking algorithm accounting for the double-bounded support. A simulation study shows the effectiveness of our proposal and an application on Bangladesh is discussed.
绘制多种地理尺度的非货币贫困地图
绘制贫困地图是研究贫困地理的有力工具。空间分辨率的选择至关重要,因为在较粗层面上定义的贫困衡量标准可能会掩盖其在较细层面上的异质性。我们介绍了一种整合调查和遥感数据的小区域多尺度方法,该方法利用了不同空间分辨率的信息,并考虑了层次依赖性,保持了估算的一致性。我们提出了一种基于贝叶斯贝塔模型的贫困率测绘方法,该模型配备了一种新的基准算法,考虑到了双界支持。模拟研究显示了我们建议的有效性,并讨论了在孟加拉国的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信