Multi‐objective prairie dog optimization algorithm for IoT‐based intrusion detection

Shubhkirti Sharma, Vijay Kumar, K. Dutta
{"title":"Multi‐objective prairie dog optimization algorithm for IoT‐based intrusion detection","authors":"Shubhkirti Sharma, Vijay Kumar, K. Dutta","doi":"10.1002/itl2.516","DOIUrl":null,"url":null,"abstract":"Detecting unauthorized access, unusual activities, and data is significant for the security of IoT networks as it helps identify malfunctioning, faults, and intrusions. Intrusion detection methods analyze network information to identify potential misuse or intrusion attacks. This research proposes a multi‐objective prairie dog optimization algorithm (MPDA) to improve its ability to deal with feature selection problems. The proposed algorithm is modified by incorporating the concepts of an archive, grid, and non‐dominance. An archive and a grid are used to save intermediate best results and improve the diversity, respectively. The non‐dominance concept is employed to deal with multiple objectives. On the NSL‐KDD, CIC‐IDS2017, and IoTID20 datasets, MPDA achieves fewer features, higher accuracy, and lower false alarm rates. MPDA outperforms simple classifiers and state‐of‐art multiobjective optimization algorithms in intrusion detection.","PeriodicalId":509592,"journal":{"name":"Internet Technology Letters","volume":" 30","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/itl2.516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting unauthorized access, unusual activities, and data is significant for the security of IoT networks as it helps identify malfunctioning, faults, and intrusions. Intrusion detection methods analyze network information to identify potential misuse or intrusion attacks. This research proposes a multi‐objective prairie dog optimization algorithm (MPDA) to improve its ability to deal with feature selection problems. The proposed algorithm is modified by incorporating the concepts of an archive, grid, and non‐dominance. An archive and a grid are used to save intermediate best results and improve the diversity, respectively. The non‐dominance concept is employed to deal with multiple objectives. On the NSL‐KDD, CIC‐IDS2017, and IoTID20 datasets, MPDA achieves fewer features, higher accuracy, and lower false alarm rates. MPDA outperforms simple classifiers and state‐of‐art multiobjective optimization algorithms in intrusion detection.
基于物联网的入侵检测多目标草原犬优化算法
检测未经授权的访问、异常活动和数据对物联网网络的安全意义重大,因为它有助于识别故障、故障和入侵。入侵检测方法通过分析网络信息来识别潜在的滥用或入侵攻击。本研究提出了一种多目标草原犬优化算法(MPDA),以提高其处理特征选择问题的能力。该算法结合了档案、网格和非优势的概念。档案和网格分别用于保存中间最佳结果和提高多样性。非优势概念用于处理多个目标。在 NSL-KDD、CIC-IDS2017 和 IoTID20 数据集上,MPDA 实现了更少的特征、更高的准确率和更低的误报率。在入侵检测方面,MPDA 的表现优于简单分类器和最先进的多目标优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信