Quasi hemi Slant Submanifolds of Lorentzian Concircular Structures

PROOF Pub Date : 2024-03-21 DOI:10.37394/232020.2024.4.1
Toukeer Khan, Sheeba Rizvi, O. Bahadır
{"title":"Quasi hemi Slant Submanifolds of Lorentzian Concircular Structures","authors":"Toukeer Khan, Sheeba Rizvi, O. Bahadır","doi":"10.37394/232020.2024.4.1","DOIUrl":null,"url":null,"abstract":"n this manuscript, we introduce and explore quasi hemi-slant submanifolds, extending the concepts of slant submanifolds, semi-slant submanifolds, and hemi-slant submanifolds within Lorentzian concircular structures- manifolds (LCS)n -manifolds. We establish necessary and sufficient conditions for the integrability of distributions relevant to defining quasi hemi-slant submanifolds within Lorentzian concircular structuresmanifolds or (LCS)n- manifolds. Additionally, we investigate the conditions under which quasi hemi-slant submanifolds of Lorentzian concircular structures can be totally geodesic and analyze the geometric properties of foliations determined by the associated distribution.","PeriodicalId":509773,"journal":{"name":"PROOF","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROOF","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232020.2024.4.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

n this manuscript, we introduce and explore quasi hemi-slant submanifolds, extending the concepts of slant submanifolds, semi-slant submanifolds, and hemi-slant submanifolds within Lorentzian concircular structures- manifolds (LCS)n -manifolds. We establish necessary and sufficient conditions for the integrability of distributions relevant to defining quasi hemi-slant submanifolds within Lorentzian concircular structuresmanifolds or (LCS)n- manifolds. Additionally, we investigate the conditions under which quasi hemi-slant submanifolds of Lorentzian concircular structures can be totally geodesic and analyze the geometric properties of foliations determined by the associated distribution.
洛伦兹环形结构的准半斜子满面
在本手稿中,我们介绍并探讨了准半斜子流形,扩展了洛伦兹协圆结构流形(LCS)n 流形中的斜子流形、半斜子流形和半斜子流形的概念。我们为定义洛伦兹协圆结构流形或(LCS)n 流形内的准半斜子流形的相关分布的可积分性建立了必要和充分条件。此外,我们还研究了洛伦兹协圆结构的准半斜子流形可以完全测地的条件,并分析了由相关分布决定的叶形的几何性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信