{"title":"Exploration of High-Frequency Actuation On Gust Response Using Large-Eddy Simulation","authors":"Caleb Barnes","doi":"10.1115/1.4065149","DOIUrl":null,"url":null,"abstract":"\n Mitigation of gust-induced separation and aerodynamic loads using a high-frequency blowing/suction slot, previously shown to be effective at alleviating dynamic stall on pitching wings, is demonstrated using high-order implicit large-eddy simulation. A NACA0012 wing section at a transitional chord-based Reynolds number of Re = 500,000 and subsonic freestream Mach number of M = 0.1 at angles of attack of 4 deg and 12 deg is subjected to various discrete 1-cos transverse gusts. Gust-induced stall is demonstrated and then active flow control is applied to cases vulnerable to gust-induced stall. The flow control strategy is shown to be effective at stall suppression during gust encounter thereby providing partial alleviation of gust induced loads and is most effective at attenuating pitching moment increment.","PeriodicalId":504378,"journal":{"name":"Journal of Fluids Engineering","volume":" 36","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mitigation of gust-induced separation and aerodynamic loads using a high-frequency blowing/suction slot, previously shown to be effective at alleviating dynamic stall on pitching wings, is demonstrated using high-order implicit large-eddy simulation. A NACA0012 wing section at a transitional chord-based Reynolds number of Re = 500,000 and subsonic freestream Mach number of M = 0.1 at angles of attack of 4 deg and 12 deg is subjected to various discrete 1-cos transverse gusts. Gust-induced stall is demonstrated and then active flow control is applied to cases vulnerable to gust-induced stall. The flow control strategy is shown to be effective at stall suppression during gust encounter thereby providing partial alleviation of gust induced loads and is most effective at attenuating pitching moment increment.