Experimental determination of tin partitioning between titanite, ilmenite and granitic melts using improved capsule designs.

Jintuan Wang, Fangfang Huang, Xiaolin Xiong, Mingdi Gao, Li Li, Chunxia Wei
{"title":"Experimental determination of tin partitioning between titanite, ilmenite and granitic melts using improved capsule designs.","authors":"Jintuan Wang, Fangfang Huang, Xiaolin Xiong, Mingdi Gao, Li Li, Chunxia Wei","doi":"10.7185/gold2023.19768","DOIUrl":null,"url":null,"abstract":"\n Investigating mineral/melt Sn partitioning at high temperatures and pressures is a difficult task because Sn is a redox-sensitive multivalent element and easily alloys with noble metal sample capsules. To obtain accurate Sn partition coefficients between titanite, ilmenite, and granitic melts, we developed single capsule Pt or Au and double capsule Pt95Rh5 (or Au)–Re designs to avoid significant Sn loss at a controlled oxygen fugacity (ƒO2). With these new capsule designs, we performed piston-cylinder experiments of Sn partitioning between titanite, ilmenite, and granitic melts. The experimental P–T–ƒO2 conditions were 0.5–1.0 GPa, 850–1000 °C and ~QFM+8 to ~QFM–4 (QFM: Quartz–Fayalite–Magnetite buffer), with ƒO2 controlled by the solid buffers of Ru–RuO2, Re–ReO2, Co–CoO, graphite, and Fe–FeO. The obtained mineral/melt Sn partition coefficients (DSnmin/melt) are 0.48–184.75 for titanite and 0.03–69.45 for ilmenite at the experimental conditions. The DSnmin/melt values are largely dependent on ƒO2 although the effects of temperature and melt composition are also observed. DSnTtn/melt strongly decreases with decreasing ƒO2, from ~46–185 at the most oxidizing conditions (Ru–RuO2 buffer), to ~2–16 at moderately oxidizing to moderately reducing conditions (Re–ReO2 to Co–CoO and graphite buffers), to < 1 at the most reducing conditions (Fe–FeO buffer). DSnIlm/melt exhibits a variation trend similar to DSnTtn/melt, but is always lower than DSnTtn/melt at a given ƒO2. These DSnmin/melt values can be applied to quantitatively assess the mineralization potential of granitic magmas. Using DSnTtn/melt, we estimate that Sn contents are ~150–400 ppm in the premineralization magmas of the tin-mineralized Qitianling plutons (South China).","PeriodicalId":507710,"journal":{"name":"Goldschmidt2023 abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Goldschmidt2023 abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7185/gold2023.19768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating mineral/melt Sn partitioning at high temperatures and pressures is a difficult task because Sn is a redox-sensitive multivalent element and easily alloys with noble metal sample capsules. To obtain accurate Sn partition coefficients between titanite, ilmenite, and granitic melts, we developed single capsule Pt or Au and double capsule Pt95Rh5 (or Au)–Re designs to avoid significant Sn loss at a controlled oxygen fugacity (ƒO2). With these new capsule designs, we performed piston-cylinder experiments of Sn partitioning between titanite, ilmenite, and granitic melts. The experimental P–T–ƒO2 conditions were 0.5–1.0 GPa, 850–1000 °C and ~QFM+8 to ~QFM–4 (QFM: Quartz–Fayalite–Magnetite buffer), with ƒO2 controlled by the solid buffers of Ru–RuO2, Re–ReO2, Co–CoO, graphite, and Fe–FeO. The obtained mineral/melt Sn partition coefficients (DSnmin/melt) are 0.48–184.75 for titanite and 0.03–69.45 for ilmenite at the experimental conditions. The DSnmin/melt values are largely dependent on ƒO2 although the effects of temperature and melt composition are also observed. DSnTtn/melt strongly decreases with decreasing ƒO2, from ~46–185 at the most oxidizing conditions (Ru–RuO2 buffer), to ~2–16 at moderately oxidizing to moderately reducing conditions (Re–ReO2 to Co–CoO and graphite buffers), to < 1 at the most reducing conditions (Fe–FeO buffer). DSnIlm/melt exhibits a variation trend similar to DSnTtn/melt, but is always lower than DSnTtn/melt at a given ƒO2. These DSnmin/melt values can be applied to quantitatively assess the mineralization potential of granitic magmas. Using DSnTtn/melt, we estimate that Sn contents are ~150–400 ppm in the premineralization magmas of the tin-mineralized Qitianling plutons (South China).
利用改进的胶囊设计对钛铁矿、钛铁矿和花岗岩熔体之间的锡分配进行实验测定。
在高温高压下研究矿物/熔体的锡分配是一项艰巨的任务,因为锡是一种对氧化还原反应敏感的多价元素,很容易与贵金属样品胶囊合金化。为了获得钛铁矿、钛铁矿和花岗岩熔体之间精确的锡分配系数,我们开发了单胶囊 Pt 或 Au 和双胶囊 Pt95Rh5(或 Au)-Re 设计,以避免在受控氧富集度(ƒO2)条件下出现大量的锡损失。利用这些新的胶囊设计,我们对钛铁矿、钛铁矿和花岗岩熔体之间的锡分配进行了活塞缸实验。实验的 P-T-ƒO2 条件为 0.5-1.0 GPa、850-1000 °C 和 ~QFM+8 至 ~QFM-4(QFM:石英-辉绿岩-磁铁矿缓冲),ƒO2 由 Ru-RuO2、Re-ReO2、Co-CoOO、石墨和 Fe-FeO 固体缓冲控制。在实验条件下,钛铁矿的矿物/熔体锡分配系数(DSnmin/熔体)为 0.48-184.75,钛铁矿的矿物/熔体锡分配系数(DSnmin/熔体)为 0.03-69.45。DSnmin/melt 值在很大程度上取决于ƒO2,但也观察到温度和熔体成分的影响。DSnTtn/melt 随着 ƒO2 的降低而强烈减小,从最氧化条件(Ru-RuO2 缓冲溶液)下的 ~46-185 到中度氧化到中度还原条件(Re-ReO2 到 Co-CoO 和石墨缓冲溶液)下的 ~2-16,再到最还原条件(Fe-FeO 缓冲溶液)下的 <1。DSnIlm/melt 的变化趋势与 DSnTtn/melt 相似,但在给定 ƒO2 条件下总是低于 DSnTtn/melt。这些 DSnmin/melt 值可用于定量评估花岗岩岩浆的成矿潜力。利用DSnTtn/melt,我们估计在锡矿化的齐天岭岩浆(华南)的成矿前岩浆中,锡的含量约为150-400 ppm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信