Surface burn prevention based on the probability control of pulses with ignition delay in WEDM

IF 1.9 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Hongwei Pan, Zhidong Liu, Cong Deng
{"title":"Surface burn prevention based on the probability control of pulses with ignition delay in WEDM","authors":"Hongwei Pan, Zhidong Liu, Cong Deng","doi":"10.1177/09544054241238027","DOIUrl":null,"url":null,"abstract":"This study aims to address surface burn and increased probability of wire breakage under high-energy cutting conditions in wire electrical discharge machining (WEDM). Firstly, the causes of surface burns are investigated, revealing that the deterioration of cooling, debris removal, and deionization status in the machining gap are the dominating factors. Maintaining a certain ratio of pulse to ignition delay is essential for proper discharge machining. Secondly, a servo control strategy based on the pulse probability of ignition delay is proposed. When the target probability is preset to 25%, the machining stability is significantly improved, preventing surface burns and decreasing the probability of wire breakage. With this servo control, the maximum average machining current free of surface burn is raised from 6 to 8 A. As a result, the max cutting speed is improved by 24%, and the tensile strength of the wire electrode is enhanced by 23.5%. In addition, the machined surface area increases by 22% when the diameter wear of the wire electrode reaches 0.01 mm. The new servo control has been demonstrated to be effective in facilitating machining efficiency and extending wire electrode durability in WEDM.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241238027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to address surface burn and increased probability of wire breakage under high-energy cutting conditions in wire electrical discharge machining (WEDM). Firstly, the causes of surface burns are investigated, revealing that the deterioration of cooling, debris removal, and deionization status in the machining gap are the dominating factors. Maintaining a certain ratio of pulse to ignition delay is essential for proper discharge machining. Secondly, a servo control strategy based on the pulse probability of ignition delay is proposed. When the target probability is preset to 25%, the machining stability is significantly improved, preventing surface burns and decreasing the probability of wire breakage. With this servo control, the maximum average machining current free of surface burn is raised from 6 to 8 A. As a result, the max cutting speed is improved by 24%, and the tensile strength of the wire electrode is enhanced by 23.5%. In addition, the machined surface area increases by 22% when the diameter wear of the wire electrode reaches 0.01 mm. The new servo control has been demonstrated to be effective in facilitating machining efficiency and extending wire electrode durability in WEDM.
基于带点火延迟的脉冲概率控制的线切割放电加工(WEDM)表面烧伤预防技术
本研究旨在解决线切割加工(WEDM)中高能切削条件下的表面烧伤和断丝概率增加问题。首先,研究了表面烧伤的原因,发现冷却恶化、碎片清除和加工间隙中的去离子状态是主要因素。保持一定的脉冲与点火延迟比对于正确的放电加工至关重要。其次,提出了一种基于点火延迟脉冲概率的伺服控制策略。当目标概率预设为 25% 时,加工稳定性显著提高,可防止表面烧伤并降低断丝概率。在这种伺服控制下,无表面烧伤的最大平均加工电流从 6 A 提高到 8 A。因此,最大切削速度提高了 24%,钢丝电极的抗拉强度提高了 23.5%。此外,当电极丝的直径磨损达到 0.01 mm 时,加工表面积增加了 22%。事实证明,新型伺服控制能有效提高线切割机床的加工效率并延长电极丝的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
30.80%
发文量
167
审稿时长
5.1 months
期刊介绍: Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed. Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing. Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信