Machine Learning Prediction of Fetal Health Status from Cardiotocography Examination in Developing Healthcare Contexts

O. C. Olayemi, O. O. Olasehinde
{"title":"Machine Learning Prediction of Fetal Health Status from Cardiotocography Examination in Developing Healthcare Contexts","authors":"O. C. Olayemi, O. O. Olasehinde","doi":"10.30564/jcsr.v6i1.6242","DOIUrl":null,"url":null,"abstract":"Reducing neonatal mortality is a critical global health objective, especially in resource-constrained developing countries. This study employs machine learning (ML) techniques to predict fetal health status based on cardiotocography (CTG) examination findings, utilizing a dataset from the Kaggle repository due to the limited comprehensive healthcare data available in developing nations. Features such as baseline fetal heart rate, uterine contractions, and waveform characteristics were extracted using the RFE wrapper feature engineering technique and scaled with a standard scaler. Six ML models—Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), Categorical Boosting (CB), and Extended Gradient Boosting (XGB)—are trained via cross-validation and evaluated using performance metrics. The developed models were trained via cross-validation and evaluated using ML performance metrics. Eight out of the 21 features selected by GB returned their maximum Matthews Correlation Coefficient (MCC) score of 0.6255, while CB, with 20 of the 21 features, returned the maximum and highest MCC score of 0.6321. The study demonstrated the ability of ML models to predict fetal health conditions from CTG exam results, facilitating early identification of high-risk pregnancies and enabling prompt treatment to prevent severe neonatal outcomes.","PeriodicalId":479870,"journal":{"name":"Journal of computer science research","volume":" 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of computer science research","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.30564/jcsr.v6i1.6242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing neonatal mortality is a critical global health objective, especially in resource-constrained developing countries. This study employs machine learning (ML) techniques to predict fetal health status based on cardiotocography (CTG) examination findings, utilizing a dataset from the Kaggle repository due to the limited comprehensive healthcare data available in developing nations. Features such as baseline fetal heart rate, uterine contractions, and waveform characteristics were extracted using the RFE wrapper feature engineering technique and scaled with a standard scaler. Six ML models—Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), Categorical Boosting (CB), and Extended Gradient Boosting (XGB)—are trained via cross-validation and evaluated using performance metrics. The developed models were trained via cross-validation and evaluated using ML performance metrics. Eight out of the 21 features selected by GB returned their maximum Matthews Correlation Coefficient (MCC) score of 0.6255, while CB, with 20 of the 21 features, returned the maximum and highest MCC score of 0.6321. The study demonstrated the ability of ML models to predict fetal health conditions from CTG exam results, facilitating early identification of high-risk pregnancies and enabling prompt treatment to prevent severe neonatal outcomes.
在发展中医疗保健环境下,通过机器学习从心脏排畸检查预测胎儿健康状况
降低新生儿死亡率是一项重要的全球健康目标,尤其是在资源有限的发展中国家。由于发展中国家的综合医疗保健数据有限,本研究利用机器学习(ML)技术,基于心脏排畸(CTG)检查结果预测胎儿健康状况,数据集来自 Kaggle 数据库。使用 RFE 封装特征工程技术提取了基线胎心率、子宫收缩和波形特征,并使用标准缩放器进行了缩放。通过交叉验证训练了六种 ML 模型--逻辑回归模型(LR)、决策树模型(DT)、随机森林模型(RF)、梯度提升模型(GB)、分类提升模型(CB)和扩展梯度提升模型(XGB),并使用性能指标进行了评估。开发的模型通过交叉验证进行训练,并使用 ML 性能指标进行评估。在 GB 选择的 21 个特征中,有 8 个特征的最大马修斯相关系数 (MCC) 得分为 0.6255,而在 CB 选择的 21 个特征中,有 20 个特征的最大马修斯相关系数 (MCC) 得分为 0.6321。该研究证明了 ML 模型从 CTG 检查结果预测胎儿健康状况的能力,有助于早期识别高危妊娠,并及时治疗,防止新生儿出现严重后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信