A. Esfandiari, Cara Norling, Ryohei Kaji, Andrew McLachlan, Liya Mathew, Margaret B Fleming, Ed Morgan, J. Nadarajan
{"title":"Variations in Seed Dormancy Occurrence and Their Classifications in Thirteen Actinidia Species","authors":"A. Esfandiari, Cara Norling, Ryohei Kaji, Andrew McLachlan, Liya Mathew, Margaret B Fleming, Ed Morgan, J. Nadarajan","doi":"10.3390/seeds3020014","DOIUrl":null,"url":null,"abstract":"As differences in seed dormancy between Actinidia species have not been reported previously, in this study we characterized the variation in the dormancy of seeds in 13 kiwifruit species that originated from different regions of China and Taiwan, and for which mature plants are now growing in New Zealand orchards. Dormancy-breaking treatments, including cold-moist stratification, seed coat scarification and soaking in water and gibberellic acid (GA3), were tested for their efficacy in alleviating dormancy and improving final germination and germination rates. In addition, we assessed seed viability using RNA integrity analysis to distinguish dead seeds from dormant seeds. This study identified that dormancy type in Actinidia seeds is species-specific and can be morphological, morphophysiological or a combination of physiological and physical, and that seed RNA integrity is a useful metric to incorporate into seed dormancy studies. Our results also suggest that species originating from colder climates that experience large differences between winter minimum and summer maximum temperatures exhibit physiological dormancy and require cold-moist stratification, contrasting with species originating in milder climates. Interestingly, although not all seeds from all the species were dormant, the proportion of dormant seeds in each species did not correlate to the climatic data of the region from which they originated. These findings provide new insights into mechanisms of seed dormancy in kiwifruit.","PeriodicalId":509513,"journal":{"name":"Seeds","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seeds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/seeds3020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As differences in seed dormancy between Actinidia species have not been reported previously, in this study we characterized the variation in the dormancy of seeds in 13 kiwifruit species that originated from different regions of China and Taiwan, and for which mature plants are now growing in New Zealand orchards. Dormancy-breaking treatments, including cold-moist stratification, seed coat scarification and soaking in water and gibberellic acid (GA3), were tested for their efficacy in alleviating dormancy and improving final germination and germination rates. In addition, we assessed seed viability using RNA integrity analysis to distinguish dead seeds from dormant seeds. This study identified that dormancy type in Actinidia seeds is species-specific and can be morphological, morphophysiological or a combination of physiological and physical, and that seed RNA integrity is a useful metric to incorporate into seed dormancy studies. Our results also suggest that species originating from colder climates that experience large differences between winter minimum and summer maximum temperatures exhibit physiological dormancy and require cold-moist stratification, contrasting with species originating in milder climates. Interestingly, although not all seeds from all the species were dormant, the proportion of dormant seeds in each species did not correlate to the climatic data of the region from which they originated. These findings provide new insights into mechanisms of seed dormancy in kiwifruit.