{"title":"The Vuong-Lo-Mendell-Rubin test for latent class and latent profile analysis: A note on the different implementations in Mplus and LatentGOLD","authors":"Jeroen K. Vermunt","doi":"10.5964/meth.12467","DOIUrl":null,"url":null,"abstract":"Mplus and LatentGOLD implement the Vuong-Lo-Mendell-Rubin test (comparing models with K and K + 1 latent classes) in slightly differ manners. While LatentGOLD uses the formulae from Vuong (1989; https://doi.org/10.2307/1912557), Mplus replaces the standard parameter variance-covariance matrix by its robust version. Our small simulation study showed why such a seemingly small difference may sometimes yield rather different results. The main finding is that the Mplus approximation of the distribution of the likelihood-ratio statistic is much more data dependent than the LatentGOLD one. This data dependency is stronger when the true model serves as the null hypothesis (H0) with K classes than when it serves as the alternative hypothesis (H1) with K + 1 classes, and it is also stronger for low class separation than for high class separation. Another important finding is that neither of the two implementations yield uniformly distributed p-values under the correct null hypothesis, indicating this test is not the best model selection tool in mixture modeling.","PeriodicalId":511881,"journal":{"name":"Methodology","volume":" 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5964/meth.12467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Mplus and LatentGOLD implement the Vuong-Lo-Mendell-Rubin test (comparing models with K and K + 1 latent classes) in slightly differ manners. While LatentGOLD uses the formulae from Vuong (1989; https://doi.org/10.2307/1912557), Mplus replaces the standard parameter variance-covariance matrix by its robust version. Our small simulation study showed why such a seemingly small difference may sometimes yield rather different results. The main finding is that the Mplus approximation of the distribution of the likelihood-ratio statistic is much more data dependent than the LatentGOLD one. This data dependency is stronger when the true model serves as the null hypothesis (H0) with K classes than when it serves as the alternative hypothesis (H1) with K + 1 classes, and it is also stronger for low class separation than for high class separation. Another important finding is that neither of the two implementations yield uniformly distributed p-values under the correct null hypothesis, indicating this test is not the best model selection tool in mixture modeling.