{"title":"Pedestrian tracking method based on S-YOFEO framework in complex scene","authors":"Wenshun Sheng, Jiahui Shen, Qiming Huang, Zhixuan Liu, Zihao Ding","doi":"10.3233/jifs-237208","DOIUrl":null,"url":null,"abstract":"A real-time stable multi-target tracking method based on the enhanced You Only Look Once-v8 (YOLOv8) and the optimized Simple Online and Realtime Tracking with a Deep association metric (DeepSORT) for multi-target tracking (S-YOFEO) is proposed with the aim of addressing the issue of target ID transformation and loss caused by the increase of practical background complexity. For the purpose of further enhancing the representation of small-scale features, a small target detection head is first introduced to the detection layer of YOLOv8 in this paper with the aim of collecting more detailed information by increasing the detection resolution of YOLOv8. Secondly, the Omni-Scale Network (OSNet) feature extraction network is implemented to enable accurate and efficient fusion of the extracted complex and comparable feature information, taking into account the restricted computational power of DeepSORT’s original feature extraction network. Again, a novel adaptive forgetting Kalman filter algorithm (FSA) is devised to enhance the precision of model prediction and the effectiveness of parameter updates to adjust to the uncertain movement speed and trajectory of pedestrians in real scenarios. Following that, an accurate and stable association matching process is obtained by substituting Efficient-Intersection over Union (EIOU) for Complete-Intersection over Union (CIOU) in DeepSORT to boost the convergence speed and matching effect during association matching. Last but not least, One-Shot Aggregation (OSA) is presented as the trajectory feature extractor to deal with the various noise interferences in the complex scene. OSA is highly sensitive to information of different scales, and its one-time aggregation property substantially decreases the computational overhead of the model. According to the trial results, S-YOFEO has made some developments as its precision can reach 78.2% and its speed can reach 56.0 frames per second (FPS).","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":" 62","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-237208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A real-time stable multi-target tracking method based on the enhanced You Only Look Once-v8 (YOLOv8) and the optimized Simple Online and Realtime Tracking with a Deep association metric (DeepSORT) for multi-target tracking (S-YOFEO) is proposed with the aim of addressing the issue of target ID transformation and loss caused by the increase of practical background complexity. For the purpose of further enhancing the representation of small-scale features, a small target detection head is first introduced to the detection layer of YOLOv8 in this paper with the aim of collecting more detailed information by increasing the detection resolution of YOLOv8. Secondly, the Omni-Scale Network (OSNet) feature extraction network is implemented to enable accurate and efficient fusion of the extracted complex and comparable feature information, taking into account the restricted computational power of DeepSORT’s original feature extraction network. Again, a novel adaptive forgetting Kalman filter algorithm (FSA) is devised to enhance the precision of model prediction and the effectiveness of parameter updates to adjust to the uncertain movement speed and trajectory of pedestrians in real scenarios. Following that, an accurate and stable association matching process is obtained by substituting Efficient-Intersection over Union (EIOU) for Complete-Intersection over Union (CIOU) in DeepSORT to boost the convergence speed and matching effect during association matching. Last but not least, One-Shot Aggregation (OSA) is presented as the trajectory feature extractor to deal with the various noise interferences in the complex scene. OSA is highly sensitive to information of different scales, and its one-time aggregation property substantially decreases the computational overhead of the model. According to the trial results, S-YOFEO has made some developments as its precision can reach 78.2% and its speed can reach 56.0 frames per second (FPS).