Data-driven control of a five-bar parallel robot with compliant joints

Angel Ramírez-Martínez, J. E. Chong-Quero, Héctor Cervantes-Culebro, C. Cruz-Villar
{"title":"Data-driven control of a five-bar parallel robot with compliant joints","authors":"Angel Ramírez-Martínez, J. E. Chong-Quero, Héctor Cervantes-Culebro, C. Cruz-Villar","doi":"10.3233/jifs-219364","DOIUrl":null,"url":null,"abstract":"This paper presents a data-driven control approach for a five-bar robot with compliant joints. The robot consists of a parallel mechanism with compliant elements that introduce uncertainties in modeling and control. To address this fact, it is implemented a model-less data-driven controller based on a Feedforward Neural Network Module (FNNM) that identifies the inverse dynamics of the robot. The FNNM is incorporated into a coordination of Feedforward Control Method (CFCM) to achieve precise trajectory tracking. Experiments compare the compliant joints robot to a bearing-joint robot performing pick-and-place tasks from 0.15 to 3.15 Hz. Results show the compliant robot maintaining trajectory tracking up to 1.25 Hz with a Root Mean Square Error (RMSE) of 9.02 mm.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-219364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a data-driven control approach for a five-bar robot with compliant joints. The robot consists of a parallel mechanism with compliant elements that introduce uncertainties in modeling and control. To address this fact, it is implemented a model-less data-driven controller based on a Feedforward Neural Network Module (FNNM) that identifies the inverse dynamics of the robot. The FNNM is incorporated into a coordination of Feedforward Control Method (CFCM) to achieve precise trajectory tracking. Experiments compare the compliant joints robot to a bearing-joint robot performing pick-and-place tasks from 0.15 to 3.15 Hz. Results show the compliant robot maintaining trajectory tracking up to 1.25 Hz with a Root Mean Square Error (RMSE) of 9.02 mm.
带顺应性关节的五杆并联机器人的数据驱动控制
本文介绍了一种针对具有顺应性关节的五杆机器人的数据驱动控制方法。该机器人由并联机构和顺应元件组成,这些顺应元件会给建模和控制带来不确定性。为解决这一问题,我们采用了基于前馈神经网络模块(FNNM)的无模型数据驱动控制器,该模块可识别机器人的反动态。前馈神经网络模块被纳入前馈控制协调方法(CFCM),以实现精确的轨迹跟踪。实验将顺应关节机器人与轴承关节机器人进行了比较,后者在 0.15 至 3.15 Hz 的频率范围内执行拾放任务。结果表明,顺应型机器人的轨迹跟踪频率高达 1.25 Hz,均方根误差 (RMSE) 为 9.02 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信