Angel Ramírez-Martínez, J. E. Chong-Quero, Héctor Cervantes-Culebro, C. Cruz-Villar
{"title":"Data-driven control of a five-bar parallel robot with compliant joints","authors":"Angel Ramírez-Martínez, J. E. Chong-Quero, Héctor Cervantes-Culebro, C. Cruz-Villar","doi":"10.3233/jifs-219364","DOIUrl":null,"url":null,"abstract":"This paper presents a data-driven control approach for a five-bar robot with compliant joints. The robot consists of a parallel mechanism with compliant elements that introduce uncertainties in modeling and control. To address this fact, it is implemented a model-less data-driven controller based on a Feedforward Neural Network Module (FNNM) that identifies the inverse dynamics of the robot. The FNNM is incorporated into a coordination of Feedforward Control Method (CFCM) to achieve precise trajectory tracking. Experiments compare the compliant joints robot to a bearing-joint robot performing pick-and-place tasks from 0.15 to 3.15 Hz. Results show the compliant robot maintaining trajectory tracking up to 1.25 Hz with a Root Mean Square Error (RMSE) of 9.02 mm.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-219364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a data-driven control approach for a five-bar robot with compliant joints. The robot consists of a parallel mechanism with compliant elements that introduce uncertainties in modeling and control. To address this fact, it is implemented a model-less data-driven controller based on a Feedforward Neural Network Module (FNNM) that identifies the inverse dynamics of the robot. The FNNM is incorporated into a coordination of Feedforward Control Method (CFCM) to achieve precise trajectory tracking. Experiments compare the compliant joints robot to a bearing-joint robot performing pick-and-place tasks from 0.15 to 3.15 Hz. Results show the compliant robot maintaining trajectory tracking up to 1.25 Hz with a Root Mean Square Error (RMSE) of 9.02 mm.