Efficient Market Hypothesis on the blockchain: A social-media-based index for cryptocurrency efficiency

IF 2.6 Q2 BUSINESS, FINANCE
Efstathios Polyzos, Ghulame Rubbaniy, Mieszko Mazur
{"title":"Efficient Market Hypothesis on the blockchain: A social-media-based index for cryptocurrency efficiency","authors":"Efstathios Polyzos,&nbsp;Ghulame Rubbaniy,&nbsp;Mieszko Mazur","doi":"10.1111/fire.12387","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes the use of social media as a proxy for financial information. Using an extended sample of 53,580,759 tweets and employing text analysis tools (Latent Dirichlet Allocation and Term Frequency–Inverse Document Frequency), we determine the information being exchanged on any given day. We train machine-learning classifiers and forecast crypto price movements for more than 8000 cryptocurrencies and gauge market efficiency through successful forecasts based on public information. We propose various metrics of market efficiency for cryptocurrency assets and demonstrate that market efficiency is higher during the first 6 months after the Initial Coin Offering. We also examine the efficiency behavior of individual currencies during crisis periods.</p>","PeriodicalId":47617,"journal":{"name":"FINANCIAL REVIEW","volume":"59 3","pages":"807-829"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FINANCIAL REVIEW","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/fire.12387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes the use of social media as a proxy for financial information. Using an extended sample of 53,580,759 tweets and employing text analysis tools (Latent Dirichlet Allocation and Term Frequency–Inverse Document Frequency), we determine the information being exchanged on any given day. We train machine-learning classifiers and forecast crypto price movements for more than 8000 cryptocurrencies and gauge market efficiency through successful forecasts based on public information. We propose various metrics of market efficiency for cryptocurrency assets and demonstrate that market efficiency is higher during the first 6 months after the Initial Coin Offering. We also examine the efficiency behavior of individual currencies during crisis periods.

区块链上的有效市场假说:基于社交媒体的加密货币效率指数
本文提出使用社交媒体作为金融信息的代理。利用 53,580,759 条推文的扩展样本,并采用文本分析工具(潜在德里希特分配和词频-反向文档频率),我们确定了任何一天的信息交换情况。我们训练机器学习分类器,预测 8000 多种加密货币的价格走势,并通过基于公共信息的成功预测来衡量市场效率。我们为加密货币资产提出了各种市场效率指标,并证明在首次代币发行后的前 6 个月,市场效率较高。我们还研究了危机时期单个货币的效率行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FINANCIAL REVIEW
FINANCIAL REVIEW BUSINESS, FINANCE-
CiteScore
3.30
自引率
28.10%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信