Spectroscopic characterizations, RDG and docking study of 2-[3-(4-chlorophenyl)-5-(4-(propane-2-yl) phenyl)-4,5-dihydro-1H pyrozol-1-yl]-4-(4-fluorophenyl)-1,3-thiazole
S. Babiyana, Vadivel Balachandran, Neelamegam Thirughanasambantham, A. Viji, B. Narayana, Vinutha V. Salian, Naiyf S. Alharbi, Jamal M Khaled
{"title":"Spectroscopic characterizations, RDG and docking study of 2-[3-(4-chlorophenyl)-5-(4-(propane-2-yl) phenyl)-4,5-dihydro-1H pyrozol-1-yl]-4-(4-fluorophenyl)-1,3-thiazole","authors":"S. Babiyana, Vadivel Balachandran, Neelamegam Thirughanasambantham, A. Viji, B. Narayana, Vinutha V. Salian, Naiyf S. Alharbi, Jamal M Khaled","doi":"10.1515/zpch-2024-0598","DOIUrl":null,"url":null,"abstract":"\n The theoretical calculations for 2-[3-(4-chlorophenyl)-5-(4-(propane-2-yl) phenyl)-4,5-dihydro-1H-pyrazol-1-yl]-4-(4-fluorophenyl)-1,3-thiazole (CPDFT) are performed using the Density Functional Theory (DFT) technique employing the B3LYP/cc-pVDZ and LanL2MB basis sets. Theoretical infrared (IR) and Raman frequencies as well as structural investigation were performed. The molecular structure demonstrating the presence of charge transfer and determining the bond length, bond angle of the header molecule. FMO deals about the both occupied and unoccupied orbitals of the molecule are computed. A molecular electrostatic potential map was created and analysed to identify the sites of electrophilic and nucleophilic areas of CPDFT. The ligand-protein interaction of the title compound was assessed by docking studies, indicating a strong affinity between the title compound and the target macromolecules. A reduced density gradient graph, electron localization electron and Localized orbital locator was employed to discern the non-covalent interactions of CPDFT.","PeriodicalId":506520,"journal":{"name":"Zeitschrift für Physikalische Chemie","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Physikalische Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zpch-2024-0598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The theoretical calculations for 2-[3-(4-chlorophenyl)-5-(4-(propane-2-yl) phenyl)-4,5-dihydro-1H-pyrazol-1-yl]-4-(4-fluorophenyl)-1,3-thiazole (CPDFT) are performed using the Density Functional Theory (DFT) technique employing the B3LYP/cc-pVDZ and LanL2MB basis sets. Theoretical infrared (IR) and Raman frequencies as well as structural investigation were performed. The molecular structure demonstrating the presence of charge transfer and determining the bond length, bond angle of the header molecule. FMO deals about the both occupied and unoccupied orbitals of the molecule are computed. A molecular electrostatic potential map was created and analysed to identify the sites of electrophilic and nucleophilic areas of CPDFT. The ligand-protein interaction of the title compound was assessed by docking studies, indicating a strong affinity between the title compound and the target macromolecules. A reduced density gradient graph, electron localization electron and Localized orbital locator was employed to discern the non-covalent interactions of CPDFT.