Applications of generative adversarial networks in materials science

Yuan Jiang, Jinshan Li, Xiang Yang, Ruihao Yuan
{"title":"Applications of generative adversarial networks in materials science","authors":"Yuan Jiang,&nbsp;Jinshan Li,&nbsp;Xiang Yang,&nbsp;Ruihao Yuan","doi":"10.1002/mgea.30","DOIUrl":null,"url":null,"abstract":"<p>Generative adversarial networks (GANs), as a powerful tool for inverse materials discovery, are being increasingly applied in various fields of materials science. This review provides systematic investigations on the applications of GANs from a group of different aspects. The basic principles of GANs are first introduced; then a detailed review of GANs-based studies regarding distinct scenarios across composition design, processing optimization, crystal structure search, microstructure characterization and defect detection is presented. At the end, several challenges and possible solutions are discussed and outlined. This overview highlights the efficacy of GANs in materials science, and may stimulate the further use of GANs for more intriguing achievements.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.30","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative adversarial networks (GANs), as a powerful tool for inverse materials discovery, are being increasingly applied in various fields of materials science. This review provides systematic investigations on the applications of GANs from a group of different aspects. The basic principles of GANs are first introduced; then a detailed review of GANs-based studies regarding distinct scenarios across composition design, processing optimization, crystal structure search, microstructure characterization and defect detection is presented. At the end, several challenges and possible solutions are discussed and outlined. This overview highlights the efficacy of GANs in materials science, and may stimulate the further use of GANs for more intriguing achievements.

Abstract Image

生成式对抗网络在材料科学中的应用
生成式对抗网络(GANs)作为一种强大的材料逆向发现工具,正越来越多地应用于材料科学的各个领域。本综述从多个方面对 GANs 的应用进行了系统研究。首先介绍了 GANs 的基本原理,然后详细综述了基于 GANs 的研究,涉及成分设计、加工优化、晶体结构搜索、微结构表征和缺陷检测等不同场景。最后,讨论并概述了若干挑战和可能的解决方案。本综述强调了 GANs 在材料科学中的功效,并可能激励人们进一步利用 GANs 取得更多引人入胜的成就。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信