{"title":"Structural and functional profile of phytases across the domains of life","authors":"Benjamin M. Scott , Kevin Koh , Gregory D. Rix","doi":"10.1016/j.crstbi.2024.100139","DOIUrl":null,"url":null,"abstract":"<div><p>Phytase enzymes are a crucial component of the natural phosphorus cycle, as they help make phosphate bioavailable by releasing it from phytate, the primary reservoir of organic phosphorus in grain and soil. Phytases also comprise a significant segment of the agricultural enzyme market, used primarily as an animal feed additive. At least four structurally and mechanistically distinct classes of phytases have evolved in bacteria and eukaryotes, and the natural diversity of each class is explored here using advances in protein structure prediction and functional annotation. This graphical review aims to provide a succinct description of the major classes of phytase enzymes across phyla, including their structures, conserved motifs, and mechanisms of action.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"7 ","pages":"Article 100139"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665928X24000163/pdfft?md5=ae60c1887f74c5107da5399729903531&pid=1-s2.0-S2665928X24000163-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665928X24000163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phytase enzymes are a crucial component of the natural phosphorus cycle, as they help make phosphate bioavailable by releasing it from phytate, the primary reservoir of organic phosphorus in grain and soil. Phytases also comprise a significant segment of the agricultural enzyme market, used primarily as an animal feed additive. At least four structurally and mechanistically distinct classes of phytases have evolved in bacteria and eukaryotes, and the natural diversity of each class is explored here using advances in protein structure prediction and functional annotation. This graphical review aims to provide a succinct description of the major classes of phytase enzymes across phyla, including their structures, conserved motifs, and mechanisms of action.