Jessica B Desrochers, Lora J Van Uffelen, Sarah E Webster
{"title":"Acoustic arrival predictions using oceanographic measurements and models in the Beaufort Sea.","authors":"Jessica B Desrochers, Lora J Van Uffelen, Sarah E Webster","doi":"10.1121/10.0025133","DOIUrl":null,"url":null,"abstract":"<p><p>Acoustic propagation in the Beaufort Sea is particularly sensitive to upper-ocean sound-speed structure due to the presence of a subsurface duct known as the Beaufort duct. Comparisons of acoustic predictions based on existing Arctic models with predictions based on in situ data collected by Seaglider vehicles in the summer of 2017 show differences in the strength, depth, and number of ducts, highlighting the importance of in situ data. These differences have a significant effect on the later, more intense portion of the acoustic time front referred to as reverse geometric dispersion, where lower-order modes arrive prior to the final cutoff.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"4 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0025133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Acoustic propagation in the Beaufort Sea is particularly sensitive to upper-ocean sound-speed structure due to the presence of a subsurface duct known as the Beaufort duct. Comparisons of acoustic predictions based on existing Arctic models with predictions based on in situ data collected by Seaglider vehicles in the summer of 2017 show differences in the strength, depth, and number of ducts, highlighting the importance of in situ data. These differences have a significant effect on the later, more intense portion of the acoustic time front referred to as reverse geometric dispersion, where lower-order modes arrive prior to the final cutoff.