The thermodynamics of neurodegenerative disease.

IF 2.9 Q2 BIOPHYSICS
Biophysics reviews Pub Date : 2024-03-20 eCollection Date: 2024-03-01 DOI:10.1063/5.0180899
Georg Meisl
{"title":"The thermodynamics of neurodegenerative disease.","authors":"Georg Meisl","doi":"10.1063/5.0180899","DOIUrl":null,"url":null,"abstract":"<p><p>The formation of protein aggregates in the brain is a central aspect of the pathology of many neurodegenerative diseases. This self-assembly of specific proteins into filamentous aggregates, or fibrils, is a fundamental biophysical process that can easily be reproduced in the test tube. However, it has been difficult to obtain a clear picture of how the biophysical insights thus obtained can be applied to the complex, multi-factorial diseases and what this means for therapeutic strategies. While new, disease-modifying therapies are now emerging, for the most devastating disorders, such as Alzheimer's and Parkinson's disease, they still fall well short of offering a cure, and few drug design approaches fully exploit the wealth of mechanistic insights that has been obtained in biophysical studies. Here, I attempt to provide a new perspective on the role of protein aggregation in disease, by phrasing the problem in terms of a system that, under constant energy consumption, attempts to maintain a healthy, aggregate-free state against the thermodynamic driving forces that inexorably push it toward pathological aggregation.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957229/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0180899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of protein aggregates in the brain is a central aspect of the pathology of many neurodegenerative diseases. This self-assembly of specific proteins into filamentous aggregates, or fibrils, is a fundamental biophysical process that can easily be reproduced in the test tube. However, it has been difficult to obtain a clear picture of how the biophysical insights thus obtained can be applied to the complex, multi-factorial diseases and what this means for therapeutic strategies. While new, disease-modifying therapies are now emerging, for the most devastating disorders, such as Alzheimer's and Parkinson's disease, they still fall well short of offering a cure, and few drug design approaches fully exploit the wealth of mechanistic insights that has been obtained in biophysical studies. Here, I attempt to provide a new perspective on the role of protein aggregation in disease, by phrasing the problem in terms of a system that, under constant energy consumption, attempts to maintain a healthy, aggregate-free state against the thermodynamic driving forces that inexorably push it toward pathological aggregation.

神经退行性疾病的热力学。
大脑中蛋白质聚集体的形成是许多神经退行性疾病病理的一个核心方面。特定蛋白质自组装成丝状聚集体或纤维是一个基本的生物物理过程,很容易在试管中重现。然而,对于如何将由此获得的生物物理知识应用于复杂、多因素的疾病,以及这对治疗策略意味着什么,一直很难有清晰的认识。虽然新的、可改变疾病的疗法正在出现,但对于最具破坏性的疾病,如阿尔茨海默氏症和帕金森氏症,这些疗法仍然远远不能治愈疾病,而且很少有药物设计方法能充分利用生物物理研究中获得的大量机理见解。在这里,我试图从一个新的视角来探讨蛋白质聚集在疾病中的作用,即一个系统在不断消耗能量的情况下,试图维持一个健康、无聚集的状态,以抵御热力学驱动力将其无情地推向病理聚集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信