Driving Drowsiness Detection Using Fusion of Electroencephalography, Electrooculography, and Driving Quality Signals.

IF 1.3 Q4 ENGINEERING, BIOMEDICAL
Journal of Medical Signals & Sensors Pub Date : 2016-01-01
Seyed Mohammad Reza Noori, Mohammad Mikaeili
{"title":"Driving Drowsiness Detection Using Fusion of Electroencephalography, Electrooculography, and Driving Quality Signals.","authors":"Seyed Mohammad Reza Noori, Mohammad Mikaeili","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the detection of the drowsiness state (DS) for future application such as in the reduction of the road traffic accidents. The electroencephalography, electrooculography, driving quality, and Karolinska sleepiness scale data of 7 males during approximately 20 h of sleep deprivation were recorded. To reduce the eye blink artifact, an automatic mechanism based on the independent component analysis method and Higuchi's fractal dimension has been applied. After recordings, for selecting the best subset of features, a new combined method, called class separability feature selection-sequential feature selection, has been developed. This method reduces the time of calculations from 6807 to 2096 s (by 69.21%) while the classification accuracy remains relatively unchanged. For diagnosis of the DS and classification of the state, a new approach based on a self-organized map network is used. First, using the data obtained from two classes of awareness state (AS) and DS, the network achieved an accuracy of 76.51 ± 3.43%. Using data from three classes of AS, AS/DS (passing from awareness to drowsiness), and DS to the network, an accuracy of 62.70 ± 3.65% was achieved. It is suggested that the DS during driving is detectable with an unsupervised network. </p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"6 1","pages":"39-46"},"PeriodicalIF":1.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786962/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the detection of the drowsiness state (DS) for future application such as in the reduction of the road traffic accidents. The electroencephalography, electrooculography, driving quality, and Karolinska sleepiness scale data of 7 males during approximately 20 h of sleep deprivation were recorded. To reduce the eye blink artifact, an automatic mechanism based on the independent component analysis method and Higuchi's fractal dimension has been applied. After recordings, for selecting the best subset of features, a new combined method, called class separability feature selection-sequential feature selection, has been developed. This method reduces the time of calculations from 6807 to 2096 s (by 69.21%) while the classification accuracy remains relatively unchanged. For diagnosis of the DS and classification of the state, a new approach based on a self-organized map network is used. First, using the data obtained from two classes of awareness state (AS) and DS, the network achieved an accuracy of 76.51 ± 3.43%. Using data from three classes of AS, AS/DS (passing from awareness to drowsiness), and DS to the network, an accuracy of 62.70 ± 3.65% was achieved. It is suggested that the DS during driving is detectable with an unsupervised network.

利用脑电图、脑电图和驾驶质量信号的融合检测驾驶时的嗜睡状态。
本研究对嗜睡状态(DS)的检测进行了调查,以便将来用于减少道路交通事故。研究记录了 7 名男性在约 20 小时睡眠剥夺期间的脑电图、脑电图、驾驶质量和卡罗林斯卡嗜睡量表数据。为减少眨眼伪影,采用了基于独立成分分析方法和樋口分形维度的自动机制。在记录之后,为了选择最佳的特征子集,开发了一种新的组合方法,称为类分离特征选择-序列特征选择。这种方法将计算时间从 6807 秒减少到 2096 秒(减少了 69.21%),而分类准确率相对保持不变。在 DS 诊断和状态分类方面,采用了一种基于自组织图网络的新方法。首先,利用从两类意识状态(AS)和 DS 中获得的数据,网络的准确率达到了 76.51 ± 3.43%。利用 AS、AS/DS(从意识状态到昏睡状态)和 DS 三类数据,网络的准确率达到了 62.70 ± 3.65%。这表明,驾驶过程中的嗜睡状态可通过无监督网络进行检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信