Nazir Soubihe Neto, Marcela Curci Vieira de Almeida, Helton de Oliveira Couto, Carlos Henrique Miranda
{"title":"Biomarkers of endothelial glycocalyx damage are associated with microvascular dysfunction in resuscitated septic shock patients","authors":"Nazir Soubihe Neto, Marcela Curci Vieira de Almeida, Helton de Oliveira Couto, Carlos Henrique Miranda","doi":"10.1016/j.mvr.2024.104683","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Microvascular dysfunction plays a central role in organ dysfunction during septic shock. Endothelial glycocalyx (eGC) damage could contribute to impaired microcirculation. The aim was to assess whether several eGC-damaged biomarkers are associated with microvascular dysfunction in resuscitated septic shock patients.</p></div><div><h3>Methods</h3><p>This cross-sectional study included resuscitated septic shock patients (N = 31), and a group of healthy individuals (N = 20). The eGC damage biomarkers measured were syndecan-1 (SDC-1), soluble CD44 (CD44s), hyaluronic acid (HYAL) in blood sample; sulfated glycosaminoglycans (GAGs) in urine sample; and thrombomodulin (TBML) in blood sample as biomarker of endothelial cell damage. Microcirculation was assessed through sublingual videocapillaroscopy using the GlycoCheck™, which estimated the perfused vascular density (PVD); the perfused boundary region (PBR), an inverse parameter of the eGC thickness; and the microvascular health score (MVHS). We defined a low MVHS (<50th percentile in septic patients) as a surrogate for more impaired microvascular function.</p></div><div><h3>Results</h3><p>The SDC-1, CD44s, TBML and GAGs levels were correlated with impaired microvascular parameters (PVD of vessels with diameter < 10 μm, MVHS and flow-adjusted PBR); p < 0.05 for all comparisons, except for GAGs and flow-adjusted PBR. The SDC-1 [78 ng/mL (interquartile range (IQR) 45–336) vs. 48 ng/mL (IQR 9–85); p = 0.052], CD44s [796ρg/mL (IQR 512–1995) vs. 526ρg/mL (IQR 287–750); p = 0.036], TBML [734ρg/mL (IQR 237–2396) vs. 95ρg/mL (IQR 63–475); p = 0.012] and GAGs levels [0.42 ρg/mg (IQR 0.04–1.40) vs. 0.07 ρg/mg (IQR 0.02–0.20); p = 0.024]; were higher in septic patients with more impaired sublingual microvascular function (low MVHS vs. high MVHS).</p></div><div><h3>Conclusion</h3><p>SDC-1, CD44s, TBML and GAGs levels were associated with impaired microvascular function in resuscitated septic shock patients.</p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"154 ","pages":"Article 104683"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microvascular research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026286224000323","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Microvascular dysfunction plays a central role in organ dysfunction during septic shock. Endothelial glycocalyx (eGC) damage could contribute to impaired microcirculation. The aim was to assess whether several eGC-damaged biomarkers are associated with microvascular dysfunction in resuscitated septic shock patients.
Methods
This cross-sectional study included resuscitated septic shock patients (N = 31), and a group of healthy individuals (N = 20). The eGC damage biomarkers measured were syndecan-1 (SDC-1), soluble CD44 (CD44s), hyaluronic acid (HYAL) in blood sample; sulfated glycosaminoglycans (GAGs) in urine sample; and thrombomodulin (TBML) in blood sample as biomarker of endothelial cell damage. Microcirculation was assessed through sublingual videocapillaroscopy using the GlycoCheck™, which estimated the perfused vascular density (PVD); the perfused boundary region (PBR), an inverse parameter of the eGC thickness; and the microvascular health score (MVHS). We defined a low MVHS (<50th percentile in septic patients) as a surrogate for more impaired microvascular function.
Results
The SDC-1, CD44s, TBML and GAGs levels were correlated with impaired microvascular parameters (PVD of vessels with diameter < 10 μm, MVHS and flow-adjusted PBR); p < 0.05 for all comparisons, except for GAGs and flow-adjusted PBR. The SDC-1 [78 ng/mL (interquartile range (IQR) 45–336) vs. 48 ng/mL (IQR 9–85); p = 0.052], CD44s [796ρg/mL (IQR 512–1995) vs. 526ρg/mL (IQR 287–750); p = 0.036], TBML [734ρg/mL (IQR 237–2396) vs. 95ρg/mL (IQR 63–475); p = 0.012] and GAGs levels [0.42 ρg/mg (IQR 0.04–1.40) vs. 0.07 ρg/mg (IQR 0.02–0.20); p = 0.024]; were higher in septic patients with more impaired sublingual microvascular function (low MVHS vs. high MVHS).
Conclusion
SDC-1, CD44s, TBML and GAGs levels were associated with impaired microvascular function in resuscitated septic shock patients.
期刊介绍:
Microvascular Research is dedicated to the dissemination of fundamental information related to the microvascular field. Full-length articles presenting the results of original research and brief communications are featured.
Research Areas include:
• Angiogenesis
• Biochemistry
• Bioengineering
• Biomathematics
• Biophysics
• Cancer
• Circulatory homeostasis
• Comparative physiology
• Drug delivery
• Neuropharmacology
• Microvascular pathology
• Rheology
• Tissue Engineering.