{"title":"Approximation by modified \\((p,q)\\)-gamma-type operators","authors":"Naim Latif Braha","doi":"10.1186/s13660-024-03109-1","DOIUrl":null,"url":null,"abstract":"The main object of this paper is to construct a new class of modified $(p,q)$ -Gamma-type operators. For this new class of operators, in section one, the general moments are find; in section two, the Korovkin-type theorem and some direct results are proved by considering the modulus of continuity and modulus of smoothness and their behavior in Lipschitz-type spaces. In section three, some results in the weighted spaces are given, and in the end, some shape-preserving properties are proven.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"18 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03109-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The main object of this paper is to construct a new class of modified $(p,q)$ -Gamma-type operators. For this new class of operators, in section one, the general moments are find; in section two, the Korovkin-type theorem and some direct results are proved by considering the modulus of continuity and modulus of smoothness and their behavior in Lipschitz-type spaces. In section three, some results in the weighted spaces are given, and in the end, some shape-preserving properties are proven.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.