{"title":"ACDMSR: Accelerated Conditional Diffusion Models for Single Image Super-Resolution","authors":"Axi Niu;Trung X. Pham;Kang Zhang;Jinqiu Sun;Yu Zhu;Qingsen Yan;In So Kweon;Yanning Zhang","doi":"10.1109/TBC.2024.3374122","DOIUrl":null,"url":null,"abstract":"Diffusion models have gained significant popularity for image-to-image translation tasks. Previous efforts applying diffusion models to image super-resolution have demonstrated that iteratively refining pure Gaussian noise using a U-Net architecture trained on denoising at various noise levels can yield satisfactory high-resolution images from low-resolution inputs. However, this iterative refinement process comes with the drawback of low inference speed, which strongly limits its applications. To speed up inference and further enhance the performance, our research revisits diffusion models in image super-resolution and proposes a straightforward yet significant diffusion model-based super-resolution method called ACDMSR (accelerated conditional diffusion model for image super-resolution). Specifically, we adopt existing image super-resolution methods and finetune them to provide conditional images from given low-resolution images, which can help to achieve better high-resolution results than just taking low-resolution images as conditional images. Then we adapt the diffusion model to perform super-resolution through a deterministic iterative denoising process, which helps to strongly decline the inference time. We demonstrate that our method surpasses previous attempts in qualitative and quantitative results through extensive experiments conducted on benchmark datasets such as Set5, Set14, Urban100, BSD100, and Manga109. Moreover, our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 2","pages":"492-504"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10477506/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion models have gained significant popularity for image-to-image translation tasks. Previous efforts applying diffusion models to image super-resolution have demonstrated that iteratively refining pure Gaussian noise using a U-Net architecture trained on denoising at various noise levels can yield satisfactory high-resolution images from low-resolution inputs. However, this iterative refinement process comes with the drawback of low inference speed, which strongly limits its applications. To speed up inference and further enhance the performance, our research revisits diffusion models in image super-resolution and proposes a straightforward yet significant diffusion model-based super-resolution method called ACDMSR (accelerated conditional diffusion model for image super-resolution). Specifically, we adopt existing image super-resolution methods and finetune them to provide conditional images from given low-resolution images, which can help to achieve better high-resolution results than just taking low-resolution images as conditional images. Then we adapt the diffusion model to perform super-resolution through a deterministic iterative denoising process, which helps to strongly decline the inference time. We demonstrate that our method surpasses previous attempts in qualitative and quantitative results through extensive experiments conducted on benchmark datasets such as Set5, Set14, Urban100, BSD100, and Manga109. Moreover, our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”