An expectile computation cookbook

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
{"title":"An expectile computation cookbook","authors":"","doi":"10.1007/s11222-024-10403-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A substantial body of work in the last 15 years has shown that expectiles constitute an excellent candidate for becoming a standard tool in probabilistic and statistical modeling. Surprisingly, the question of how expectiles may be efficiently calculated has been left largely untouched. We fill this gap by, first, providing a general outlook on the computation of expectiles that relies on the knowledge of analytic expressions of the underlying distribution function and mean residual life function. We distinguish between discrete distributions, for which an exact calculation is always feasible, and continuous distributions, where a Newton–Raphson approximation algorithm can be implemented and a list of exceptional distributions whose expectiles are in analytic form can be given. When the distribution function and/or the mean residual life is difficult to compute, Monte-Carlo algorithms are introduced, based on an exact calculation of sample expectiles and on the use of control variates to improve computational efficiency. We discuss the relevance of our findings to statistical practice and provide numerical evidence of the performance of the considered methods.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10403-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A substantial body of work in the last 15 years has shown that expectiles constitute an excellent candidate for becoming a standard tool in probabilistic and statistical modeling. Surprisingly, the question of how expectiles may be efficiently calculated has been left largely untouched. We fill this gap by, first, providing a general outlook on the computation of expectiles that relies on the knowledge of analytic expressions of the underlying distribution function and mean residual life function. We distinguish between discrete distributions, for which an exact calculation is always feasible, and continuous distributions, where a Newton–Raphson approximation algorithm can be implemented and a list of exceptional distributions whose expectiles are in analytic form can be given. When the distribution function and/or the mean residual life is difficult to compute, Monte-Carlo algorithms are introduced, based on an exact calculation of sample expectiles and on the use of control variates to improve computational efficiency. We discuss the relevance of our findings to statistical practice and provide numerical evidence of the performance of the considered methods.

预期计算食谱
摘要 过去 15 年的大量工作表明,期望值是成为概率和统计建模标准工具的绝佳候选。令人惊讶的是,关于如何有效计算期望值的问题却基本上没有涉及。为了填补这一空白,我们首先提供了关于计算期望值的一般展望,这种展望依赖于对基本分布函数和平均残差生命函数解析表达式的了解。我们将离散型分布和连续型分布区分开来,离散型分布的精确计算总是可行的,而连续型分布则可以采用牛顿-拉斐森近似算法,并给出其期望值为解析形式的特殊分布列表。当分布函数和/或平均残差寿命难以计算时,我们引入了蒙特卡洛算法,该算法基于对样本期望值的精确计算,并使用控制变量来提高计算效率。我们讨论了研究结果与统计实践的相关性,并提供了所考虑方法性能的数值证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信