{"title":"Linkage between precipitation isotopes and water vapor sources in the monsoon margin: Evidence from arid areas of Northwest China","authors":"Fenli Chen, Qiuyan Zhang, Shengjie Wang, Jufan Chen, Minyan Gao, Mohd Aadil Bhat","doi":"10.1007/s40333-024-0095-y","DOIUrl":null,"url":null,"abstract":"<p>The isotope composition in precipitation has been widely considered as a tracer of monsoon activity. Compared with the coastal region, the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change. The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors. In this study, the precipitation samples were collected at five sampling sites (Baiyin City, Kongtong District, Maqu County, Wudu District, and Yinchuan City) of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen (δD) and oxygen (δ<sup>18</sup>O) isotopes. We analyzed the impact of meteorological factors (temperature, precipitation, and relative humidity) on the composition of precipitation isotope at daily level by regression analysis, utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events, and adopted the potential source contribution function (PSCF) and concentration weighted trajectory (CWT) to analyze the water vapor sources. The results showed that compared with the global meteoric water line (GMWL), the slope of the local meteoric water line (LMWL; δD=7.34δ<sup>18</sup>O−1.16) was lower, indicating the existence of strong regional evaporation in the study area. Temperature significantly contributed to δ<sup>18</sup>O value, while relative humidity had a significant negative effect on δ<sup>18</sup>O value. Through the backward trajectory analysis, we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area, of which moisture from the Indian Ocean to South China Sea (ITSC) and the western continental (CW) had the greatest influence on precipitation in the study area. The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass. In addition, the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0095-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The isotope composition in precipitation has been widely considered as a tracer of monsoon activity. Compared with the coastal region, the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change. The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors. In this study, the precipitation samples were collected at five sampling sites (Baiyin City, Kongtong District, Maqu County, Wudu District, and Yinchuan City) of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen (δD) and oxygen (δ18O) isotopes. We analyzed the impact of meteorological factors (temperature, precipitation, and relative humidity) on the composition of precipitation isotope at daily level by regression analysis, utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events, and adopted the potential source contribution function (PSCF) and concentration weighted trajectory (CWT) to analyze the water vapor sources. The results showed that compared with the global meteoric water line (GMWL), the slope of the local meteoric water line (LMWL; δD=7.34δ18O−1.16) was lower, indicating the existence of strong regional evaporation in the study area. Temperature significantly contributed to δ18O value, while relative humidity had a significant negative effect on δ18O value. Through the backward trajectory analysis, we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area, of which moisture from the Indian Ocean to South China Sea (ITSC) and the western continental (CW) had the greatest influence on precipitation in the study area. The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass. In addition, the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.
期刊介绍:
The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large.
The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.