Jacob W Whittle, Stephen Danks, Iwo Słodczyk, David I Fletcher
{"title":"Using digital image correlation (DIC) to measure railway ballast movement in full-scale laboratory testing of sleeper lateral resistance","authors":"Jacob W Whittle, Stephen Danks, Iwo Słodczyk, David I Fletcher","doi":"10.1177/09544097241241102","DOIUrl":null,"url":null,"abstract":"A fast and accurate method is described for determining the surface movement of railway ballast during a full-scale lateral resistance test. The proposed method utilises commodity camera equipment and open-source Digital Image Correlation (DIC) algorithms, to track individual ballast particles. It does not require time intensive ballast preparation. Tests have been performed under ambient and floodlit conditions, using colour and greyscale processing routes. The results are compared against direct measurements from lateral resistance tests to assess the accuracy of the proposed method, with a range of absolute maximum error between 0.9% and 3.4% under different laboratory conditions. The study shows that this technique is a viable way to track and measure ballast and sleeper movement over wide areas in near real time, which will lead to an increased understanding of the way ballast interactions influence track behaviour.","PeriodicalId":54567,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544097241241102","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
A fast and accurate method is described for determining the surface movement of railway ballast during a full-scale lateral resistance test. The proposed method utilises commodity camera equipment and open-source Digital Image Correlation (DIC) algorithms, to track individual ballast particles. It does not require time intensive ballast preparation. Tests have been performed under ambient and floodlit conditions, using colour and greyscale processing routes. The results are compared against direct measurements from lateral resistance tests to assess the accuracy of the proposed method, with a range of absolute maximum error between 0.9% and 3.4% under different laboratory conditions. The study shows that this technique is a viable way to track and measure ballast and sleeper movement over wide areas in near real time, which will lead to an increased understanding of the way ballast interactions influence track behaviour.
期刊介绍:
The Journal of Rail and Rapid Transit is devoted to engineering in its widest interpretation applicable to rail and rapid transit. The Journal aims to promote sharing of technical knowledge, ideas and experience between engineers and researchers working in the railway field.