Dil Jan, Shahid Ikramullah Butt, Muhammad Salman Khan, Nasir Ahmad, Ghullam Hussain
{"title":"Analyzing effects of damping materials on automotive bumper beam assembly under different velocity conditions","authors":"Dil Jan, Shahid Ikramullah Butt, Muhammad Salman Khan, Nasir Ahmad, Ghullam Hussain","doi":"10.1177/08927057241240720","DOIUrl":null,"url":null,"abstract":"Automotive bumper beams play a very crucial role in absorbing impact energy during crash collisions and reducing damage from the front or rear ends of the vehicle during low or high-velocity impact. This paper discusses the impact of different energy-absorbing materials introduced between the fascia and the metallic beam. A novel recipe, with combinations ranging from 0% to 50% and 20% to 80% of Polypropylene (PP) with Ethylene vinyl acetate (EVA) and Polypropylene (PP) with Ethylene propylene diene monomer (EPDM), was prepared by weight and comparative study based on their impact strengths was done both experimentally and numerically. The mechanical properties of the polymer blends have been determined under tensile, compressive, and impact testing. Results obtained from numerical simulation analysis lie in reasonable agreement with the experimental findings. The tensile and compression test results show that polymer blend PP/EPDM-50/50 is the best selection as an energy absorber due to its ductility and toughness properties which is evident from experimental testing. The introduction of this blend in front of the metallic strip (bumper beam) has significantly supported the improvement in the energy-absorbing capacity and impact strength.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241240720","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Automotive bumper beams play a very crucial role in absorbing impact energy during crash collisions and reducing damage from the front or rear ends of the vehicle during low or high-velocity impact. This paper discusses the impact of different energy-absorbing materials introduced between the fascia and the metallic beam. A novel recipe, with combinations ranging from 0% to 50% and 20% to 80% of Polypropylene (PP) with Ethylene vinyl acetate (EVA) and Polypropylene (PP) with Ethylene propylene diene monomer (EPDM), was prepared by weight and comparative study based on their impact strengths was done both experimentally and numerically. The mechanical properties of the polymer blends have been determined under tensile, compressive, and impact testing. Results obtained from numerical simulation analysis lie in reasonable agreement with the experimental findings. The tensile and compression test results show that polymer blend PP/EPDM-50/50 is the best selection as an energy absorber due to its ductility and toughness properties which is evident from experimental testing. The introduction of this blend in front of the metallic strip (bumper beam) has significantly supported the improvement in the energy-absorbing capacity and impact strength.
期刊介绍:
The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).