The mouse set theorem just past projective

IF 0.9 1区 数学 Q1 LOGIC
Mitch Rudominer
{"title":"The mouse set theorem just past projective","authors":"Mitch Rudominer","doi":"10.1142/s0219061324500144","DOIUrl":null,"url":null,"abstract":"<p>We identify a particular mouse, <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">ld</mtext></mstyle></mrow></msup></math></span><span></span>, the minimal ladder mouse, that sits in the mouse order just past <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>♯</mi></mrow></msubsup></math></span><span></span> for all <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span>, and we show that <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℝ</mi><mspace width=\".17em\"></mspace><mo stretchy=\"false\">∩</mo><mspace width=\".17em\"></mspace><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">ld</mtext></mstyle></mrow></msup><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub></math></span><span></span>, the set of reals that are <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi mathvariant=\"normal\">Δ</mi></mrow><mrow><mi>ω</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span><span></span> in a countable ordinal. Thus <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub></math></span><span></span> is a mouse set.</p><p>This is analogous to the fact that <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℝ</mi><mspace width=\".17em\"></mspace><mo stretchy=\"false\">∩</mo><mspace width=\".17em\"></mspace><msubsup><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>♯</mi></mrow></msubsup><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span><span></span> where <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>♯</mi></mrow></msubsup></math></span><span></span> is the sharp for the minimal inner model with a Woodin cardinal, and <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>Q</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span><span></span> is the set of reals that are <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi mathvariant=\"normal\">Δ</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span><span></span> in a countable ordinal.</p><p>More generally <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℝ</mi><mspace width=\".17em\"></mspace><mo stretchy=\"false\">∩</mo><mspace width=\".17em\"></mspace><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow><mrow><mi>♯</mi></mrow></msubsup><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo stretchy=\"false\">+</mo><mn>3</mn></mrow></msub></math></span><span></span>. The mouse <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">ld</mtext></mstyle></mrow></msup></math></span><span></span> and the set <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub></math></span><span></span> compose the next natural pair to consider in this series of results. Thus we are proving the mouse set theorem just past projective.</p><p>Some of this is not new. <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℝ</mi><mspace width=\".17em\"></mspace><mo stretchy=\"false\">∩</mo><mspace width=\".17em\"></mspace><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">ld</mtext></mstyle></mrow></msup><mo>⊆</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub></math></span><span></span> was known in the 1990s. But <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub><mo>⊆</mo><msup><mrow><mi>M</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">ld</mtext></mstyle></mrow></msup></math></span><span></span> was open until Woodin found a proof in 2018. The main goal of this paper is to give Woodin’s proof.</p>","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"43 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061324500144","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We identify a particular mouse, Mld, the minimal ladder mouse, that sits in the mouse order just past Mn for all n, and we show that Mld=Qω+1, the set of reals that are Δω+11 in a countable ordinal. Thus Qω+1 is a mouse set.

This is analogous to the fact that M1=Q3 where M1 is the sharp for the minimal inner model with a Woodin cardinal, and Q3 is the set of reals that are Δ31 in a countable ordinal.

More generally M2n+1=Q2n+3. The mouse Mld and the set Qω+1 compose the next natural pair to consider in this series of results. Thus we are proving the mouse set theorem just past projective.

Some of this is not new. MldQω+1 was known in the 1990s. But Qω+1Mld was open until Woodin found a proof in 2018. The main goal of this paper is to give Woodin’s proof.

刚刚过去的投影鼠集定理
我们确定了一种特殊的小鼠,即最小梯形小鼠 Mld,它在所有 n 的小鼠序中都位于 Mn♯之后,并且证明了 ℝ∩Mld=Qω+1,即在可数序中为Δω+11 的实数集。这类似于ℝ∩M1♯=Q3,其中 M1♯是具有伍丁心数的最小内部模型的锐,而 Q3 是在可数序数中为 Δ31 的实数集。小鼠 Mld 和集合 Qω+1 构成了这一系列结果中要考虑的下一个自然对。因此,我们证明的是刚刚过去的投影鼠集定理。ℝ∩Mld⊆Qω+1 在 20 世纪 90 年代就已为人所知。但Qω+1⊆Mld一直是未知的,直到伍丁在2018年找到了证明。本文的主要目标是给出伍丁的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信