Estimation of Bounds for the Zeros of Polynomials and Regular Functions of a Quaternionic Variable

Pub Date : 2024-03-23 DOI:10.1007/s11785-024-01517-1
Abdullah Mir, Abrar Ahmad
{"title":"Estimation of Bounds for the Zeros of Polynomials and Regular Functions of a Quaternionic Variable","authors":"Abdullah Mir, Abrar Ahmad","doi":"10.1007/s11785-024-01517-1","DOIUrl":null,"url":null,"abstract":"<p>The estimation of zeros of a polynomial with quaternionic coefficients has been done by many mathematicians in the recent past using various approaches. In this paper, we estimate the upper bounds for the zeros of polynomials and derive zero-free regions of some special regular functions of a quaternionic variable with restricted coefficients using the extended Schwarz’s lemma and the zero sets of a regular product. The obtained results for this subclass of polynomials and regular functions produce generalizations of a number of results known in the literature on this subject.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01517-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The estimation of zeros of a polynomial with quaternionic coefficients has been done by many mathematicians in the recent past using various approaches. In this paper, we estimate the upper bounds for the zeros of polynomials and derive zero-free regions of some special regular functions of a quaternionic variable with restricted coefficients using the extended Schwarz’s lemma and the zero sets of a regular product. The obtained results for this subclass of polynomials and regular functions produce generalizations of a number of results known in the literature on this subject.

分享
查看原文
四元变量的多项式和正则函数的零点界限估计
近年来,许多数学家利用各种方法对具有四元系数的多项式的零点进行了估计。在本文中,我们利用扩展的施瓦茨 Lemma 和正则积的零集,估计了多项式零点的上限,并推导出了一些具有受限系数的四元变量特殊正则函数的无零区域。对于多项式和正则函数的这一子类所获得的结果,是对有关这一主题的许多已知结果的概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信