Invariant differential operators for noncompact Lie groups: The Sp(n,1) case

IF 1.4 4区 物理与天体物理 Q3 PHYSICS, NUCLEAR
N. Aizawa, V. K. Dobrev
{"title":"Invariant differential operators for noncompact Lie groups: The Sp(n,1) case","authors":"N. Aizawa, V. K. Dobrev","doi":"10.1142/s0217751x24500222","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we continue the project of systematic construction of invariant differential operators (IDOs) on the example of the noncompact algebras <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mi>p</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. Our choice of these algebras is motivated by the fact that they belong to a narrow class of algebras, which are of split rank one, of which class the other cases were studied, some long time ago. We concentrate on the case <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>=</mo><mn>2</mn></math></span><span></span>. We give the main multiplets and the main reduced multiplets of indecomposable elementary representations (ER) for, including the necessary data for all relevant invariant differential operators. We also present explicit expressions for the singular vectors and the intertwining differential operators.</p>","PeriodicalId":50309,"journal":{"name":"International Journal of Modern Physics a","volume":"67 6 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics a","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217751x24500222","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we continue the project of systematic construction of invariant differential operators (IDOs) on the example of the noncompact algebras sp(n,1). Our choice of these algebras is motivated by the fact that they belong to a narrow class of algebras, which are of split rank one, of which class the other cases were studied, some long time ago. We concentrate on the case n=2. We give the main multiplets and the main reduced multiplets of indecomposable elementary representations (ER) for, including the necessary data for all relevant invariant differential operators. We also present explicit expressions for the singular vectors and the intertwining differential operators.

非紧凑李群的不变微分算子:Sp(n,1)情况
在本文中,我们将以非紧凑数列 sp(n,1) 为例,继续系统地构建不变微分算子(IDOs)。我们之所以选择这些数组,是因为它们属于秩为 1 的狭义数组,很久以前我们已经研究过这类数组的其他情况。我们专注于 n=2 的情况。我们给出了不可分解基本表示(ER)的主要多重子和主要还原多重子,包括所有相关不变微分算子的必要数据。我们还给出了奇异向量和交织微分算子的明确表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Modern Physics a
International Journal of Modern Physics a 物理-物理:核物理
CiteScore
3.00
自引率
12.50%
发文量
283
审稿时长
3 months
期刊介绍: Started in 1986, IJMPA has gained international repute as a high-quality scientific journal. It consists of important review articles and original papers covering the latest research developments in Particles and Fields, and selected topics intersecting with Gravitation and Cosmology. The journal also features articles of long-standing value and importance which can be vital to research into new unexplored areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信