{"title":"Structural aspects of Pt(η3-X1N1X2)(PL) (X1,2 = O, C, or Se) and Pt(η3-N1N2X1)(PL) (X1 = C, S, or Se) derivatives","authors":"Melník Milan, Mikušová Veronika, Mikuš Peter","doi":"10.1515/chem-2023-0204","DOIUrl":null,"url":null,"abstract":"This article covers 26 Pt(<jats:sc>ii</jats:sc>) complexes of compositions Pt(η<jats:sup>3</jats:sup>-X<jats:sup>1</jats:sup>N<jats:sup>1</jats:sup>X<jats:sup>2</jats:sup>)(PL) (X<jats:sup>1,2</jats:sup> = O, C, or Se) and Pt(η<jats:sup>3</jats:sup>-N<jats:sup>1</jats:sup>N<jats:sup>2</jats:sup>X<jats:sup>1</jats:sup>)(PL) (X<jats:sup>1</jats:sup> = C, S, or Se). These complexes crystallized in two crystal classes: monoclinic (14 examples) and triclinic (12 examples). The heterotridentate ligand with monodentate PL builds up a distorted square-planar geometry around each Pt(<jats:sc>ii</jats:sc>) atom. Each heterotridentate ligand Pt(η<jats:sup>3</jats:sup>-X<jats:sup>1</jats:sup>N<jats:sup>1</jats:sup>X<jats:sup>2</jats:sup>)(PL) creates two metallocyclic rings with a common N<jats:sup>1</jats:sup> atom of the O<jats:sup>1</jats:sup>C<jats:sub>2</jats:sub>N<jats:sup>1</jats:sup>C<jats:sub>3</jats:sub>O<jats:sup>2</jats:sup>, O<jats:sup>1</jats:sup>C<jats:sub>3</jats:sub>N<jats:sup>1</jats:sup>C<jats:sub>3</jats:sub>O<jats:sup>2</jats:sup>, O<jats:sup>1</jats:sup>C<jats:sub>2</jats:sub>NN<jats:sup>1</jats:sup>C<jats:sub>3</jats:sub>O<jats:sup>2</jats:sup>, C<jats:sup>1</jats:sup>C<jats:sub>2</jats:sub>N<jats:sup>1</jats:sup>C<jats:sub>2</jats:sub>C<jats:sup>2</jats:sup>, and Se<jats:sup>1</jats:sup>C<jats:sub>2</jats:sub>N<jats:sup>1</jats:sup>NC<jats:sub>2</jats:sub>Se<jats:sup>2</jats:sup> types. In Pt(η<jats:sup>3</jats:sup>-N<jats:sup>1</jats:sup>N<jats:sup>2</jats:sup>X<jats:sup>1</jats:sup>)(PL) complexes, the tridentate ligand with a common N<jats:sup>2</jats:sup> atom forms the following types of metallocyclic rings: N<jats:sup>1</jats:sup>C<jats:sub>2</jats:sub>N<jats:sup>2</jats:sup>C<jats:sub>2</jats:sub>C<jats:sup>1</jats:sup>, N<jats:sup>1</jats:sup>C<jats:sub>2</jats:sub>N<jats:sup>2</jats:sup>NCS<jats:sup>1</jats:sup>, and N<jats:sup>1</jats:sup>CNN<jats:sup>2</jats:sup>NCSe<jats:sup>1</jats:sup>. The total mean values of τ<jats:sub>4</jats:sub> for respective complexes as it grows in the sequence: 0.056 (Pt(η<jats:sup>3</jats:sup>-O<jats:sup>1</jats:sup>N<jats:sup>1</jats:sup>O<jats:sup>2</jats:sup>)(PL)) < 0.091 (Pt(η<jats:sup>3</jats:sup>-Se<jats:sup>1</jats:sup>N<jats:sup>1</jats:sup>Se<jats:sup>2</jats:sup>)(PL)) < 0.161 (Pt(η<jats:sup>3</jats:sup>-N<jats:sup>1</jats:sup>N<jats:sup>2</jats:sup>S<jats:sup>1</jats:sup>)(PL)) < 0.174 (Pt(η<jats:sup>3</jats:sup>-N<jats:sup>1</jats:sup>N<jats:sup>2</jats:sup>Se<jats:sup>1</jats:sup>)(PL)) < 0.188 (Pt(η<jats:sup>3</jats:sup>-C<jats:sup>1</jats:sup>N<jats:sup>1</jats:sup>C<jats:sup>2</jats:sup>)(PL)) < 0.211 (Pt(η<jats:sup>3</jats:sup>-N<jats:sup>1</jats:sup>N<jats:sup>2</jats:sup>C<jats:sup>1</jats:sup>)(PL)). The distortion of the square-planar geometry increases in the given sequences. The structural data (Pt–L, L–Pt–L) are analyzed and discussed with attention to the distortion of a square-planar geometry about the Pt(<jats:sc>ii</jats:sc>) atoms as well as of <jats:italic>trans</jats:italic>-influence.","PeriodicalId":19520,"journal":{"name":"Open Chemistry","volume":"8 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/chem-2023-0204","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article covers 26 Pt(ii) complexes of compositions Pt(η3-X1N1X2)(PL) (X1,2 = O, C, or Se) and Pt(η3-N1N2X1)(PL) (X1 = C, S, or Se). These complexes crystallized in two crystal classes: monoclinic (14 examples) and triclinic (12 examples). The heterotridentate ligand with monodentate PL builds up a distorted square-planar geometry around each Pt(ii) atom. Each heterotridentate ligand Pt(η3-X1N1X2)(PL) creates two metallocyclic rings with a common N1 atom of the O1C2N1C3O2, O1C3N1C3O2, O1C2NN1C3O2, C1C2N1C2C2, and Se1C2N1NC2Se2 types. In Pt(η3-N1N2X1)(PL) complexes, the tridentate ligand with a common N2 atom forms the following types of metallocyclic rings: N1C2N2C2C1, N1C2N2NCS1, and N1CNN2NCSe1. The total mean values of τ4 for respective complexes as it grows in the sequence: 0.056 (Pt(η3-O1N1O2)(PL)) < 0.091 (Pt(η3-Se1N1Se2)(PL)) < 0.161 (Pt(η3-N1N2S1)(PL)) < 0.174 (Pt(η3-N1N2Se1)(PL)) < 0.188 (Pt(η3-C1N1C2)(PL)) < 0.211 (Pt(η3-N1N2C1)(PL)). The distortion of the square-planar geometry increases in the given sequences. The structural data (Pt–L, L–Pt–L) are analyzed and discussed with attention to the distortion of a square-planar geometry about the Pt(ii) atoms as well as of trans-influence.
期刊介绍:
Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. The central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field. The journal is the premier source for cutting edge research in fundamental chemistry and it provides high quality peer review services for its authors across the world. Moreover, it allows for libraries everywhere to avoid subscribing to multiple local publications, and to receive instead all the necessary chemistry research from a single source available to the entire scientific community.