Max-stability under first-order stochastic dominance

Christopher Chambers, Alan Miller, Ruodu Wang, Qinyu Wu
{"title":"Max-stability under first-order stochastic dominance","authors":"Christopher Chambers, Alan Miller, Ruodu Wang, Qinyu Wu","doi":"arxiv-2403.13138","DOIUrl":null,"url":null,"abstract":"Max-stability is the property that taking a maximum between two inputs\nresults in a maximum between two outputs. We investigate max-stability with\nrespect to first-order stochastic dominance, the most fundamental notion of\nstochastic dominance in decision theory. Under two additional standard axioms\nof monotonicity and lower semicontinuity, we establish a representation theorem\nfor functionals satisfying max-stability, which turns out to be represented by\nthe supremum of a bivariate function. Our characterized functionals encompass\nspecial classes of functionals in the literature of risk measures, such as\nbenchmark-loss Value at Risk (VaR) and $\\Lambda$-quantile.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.13138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Max-stability is the property that taking a maximum between two inputs results in a maximum between two outputs. We investigate max-stability with respect to first-order stochastic dominance, the most fundamental notion of stochastic dominance in decision theory. Under two additional standard axioms of monotonicity and lower semicontinuity, we establish a representation theorem for functionals satisfying max-stability, which turns out to be represented by the supremum of a bivariate function. Our characterized functionals encompass special classes of functionals in the literature of risk measures, such as benchmark-loss Value at Risk (VaR) and $\Lambda$-quantile.
一阶随机优势下的最大稳定性
最大稳定性是指在两个输入之间取最大值会导致两个输出之间取最大值的特性。我们研究了一阶随机支配的最大稳定性,这是决策理论中随机支配的最基本概念。在单调性和下半连续性这两个额外的标准公理下,我们为满足最大稳定性的函数建立了一个表示定理,结果发现它是由二元函数的上峰表示的。我们表征的函数包括风险度量文献中的特殊函数类别,如基准损失风险值(VaR)和 $\Lambda$-quantile 函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信