Alienation and stability of Jensen’s and other functional equations

Pub Date : 2024-03-21 DOI:10.1007/s00010-024-01046-4
Mohamed Tial, Driss Zeglami
{"title":"Alienation and stability of Jensen’s and other functional equations","authors":"Mohamed Tial, Driss Zeglami","doi":"10.1007/s00010-024-01046-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>S</i> be a semigroup and <span>\\(\\mathbb {K}\\)</span> be the field of real or complex numbers. We deal with the stability and alienation of Cauchy’s multiplicative (resp. additive) and Jensen’s functional equations, starting from the inequalities </p><span>$$\\begin{aligned} \\left| f(xy)+f(x\\sigma y)+g(xy)-2f(x)-g(x)g(y)\\right|\\le &amp; {} \\varepsilon ,\\ \\;x,y\\in S, \\\\ \\left| f(xy)+f(x\\sigma y)+g(xy)-2f(x)-g(x)-g(y)\\right|\\le &amp; {} \\varepsilon ,\\ \\;x,y\\in S, \\end{aligned}$$</span><p>where <span>\\(f,g:S\\rightarrow \\mathbb {K}\\)</span> and <span>\\(\\sigma \\)</span> is an involutive automorphism on <i>S</i>. We also consider analogous problems for Jensen’s and the quadratic (resp. Drygas) functional equations with an involutive automorphism.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01046-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let S be a semigroup and \(\mathbb {K}\) be the field of real or complex numbers. We deal with the stability and alienation of Cauchy’s multiplicative (resp. additive) and Jensen’s functional equations, starting from the inequalities

$$\begin{aligned} \left| f(xy)+f(x\sigma y)+g(xy)-2f(x)-g(x)g(y)\right|\le & {} \varepsilon ,\ \;x,y\in S, \\ \left| f(xy)+f(x\sigma y)+g(xy)-2f(x)-g(x)-g(y)\right|\le & {} \varepsilon ,\ \;x,y\in S, \end{aligned}$$

where \(f,g:S\rightarrow \mathbb {K}\) and \(\sigma \) is an involutive automorphism on S. We also consider analogous problems for Jensen’s and the quadratic (resp. Drygas) functional equations with an involutive automorphism.

分享
查看原文
詹森方程和其他函数方程的异化和稳定性
让 S 是一个半群,而 \(\mathbb {K}\) 是实数或复数域。我们从$$\begin{aligned}不等式出发,处理考奇乘法(或加法)方程和詹森函数方程的稳定性和异化问题。\f(xy)+f(xsigma y)+g(xy)-2f(x)-g(x)g(y)\right|\le & {}\varepsilon ,\;x,y\in S,\\left| f(xy)+f(x\sigma y)+g(xy)-2f(x)-g(x)-g(y)\right|le & {}\varepsilon ,\;x,y\in S, \end{aligned}$$其中 \(f,g:S\rightarrow \mathbb {K}\) 和 \(\sigma \)是 S 上的渐开自动形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信