Vibration harmonic suppression technology for electromagnetic vibrators based on an improved sensorless feedback control method

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"Vibration harmonic suppression technology for electromagnetic vibrators based on an improved sensorless feedback control method","authors":"","doi":"10.1631/fitee.2300031","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators, we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method. Without changing the original driving circuit, the alternating current (AC) equivalent resistance of the driving coil is used to obtain high-precision vibration velocity information, and then a simple and reliable velocity feedback control system is established. Through the study of the effect of different values of key parameters on the system, we have achieved an effective expansion of the velocity characteristic frequency band of low-frequency vibration, resulting in an enhanced harmonic suppression capability of velocity feedback control. We present extensive experiments to prove the effectiveness of the proposed method and make comparisons with conventional control methods. In the frequency range of 0.01–1.00 Hz, without using any sensors, the method proposed in this study can reduce the harmonic distortion of the vibration waveform by about 40% compared to open-loop control and by about 20% compared to a conventional sensorless feedback control method.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"45 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300031","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators, we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method. Without changing the original driving circuit, the alternating current (AC) equivalent resistance of the driving coil is used to obtain high-precision vibration velocity information, and then a simple and reliable velocity feedback control system is established. Through the study of the effect of different values of key parameters on the system, we have achieved an effective expansion of the velocity characteristic frequency band of low-frequency vibration, resulting in an enhanced harmonic suppression capability of velocity feedback control. We present extensive experiments to prove the effectiveness of the proposed method and make comparisons with conventional control methods. In the frequency range of 0.01–1.00 Hz, without using any sensors, the method proposed in this study can reduce the harmonic distortion of the vibration waveform by about 40% compared to open-loop control and by about 20% compared to a conventional sensorless feedback control method.

基于改进型无传感器反馈控制方法的电磁振动器振动谐波抑制技术
摘要 为实现电磁振动器输出振动波形的低谐波失真,我们提出了一种基于改进的无传感器反馈控制方法的振动谐波抑制技术。在不改变原有驱动电路的前提下,利用驱动线圈的交流等效电阻获取高精度振动速度信息,进而建立简单可靠的速度反馈控制系统。通过研究不同关键参数值对系统的影响,我们实现了低频振动速度特征频率带的有效扩展,从而增强了速度反馈控制的谐波抑制能力。我们通过大量实验证明了所提方法的有效性,并与传统控制方法进行了比较。在 0.01-1.00 Hz 频率范围内,在不使用任何传感器的情况下,与开环控制相比,本研究提出的方法可将振动波形的谐波畸变降低约 40%,与传统的无传感器反馈控制方法相比,可降低约 20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信