MCCE: Monte Carlo sampling of valid and realistic counterfactual explanations for tabular data

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Annabelle Redelmeier, Martin Jullum, Kjersti Aas, Anders Løland
{"title":"MCCE: Monte Carlo sampling of valid and realistic counterfactual explanations for tabular data","authors":"Annabelle Redelmeier, Martin Jullum, Kjersti Aas, Anders Løland","doi":"10.1007/s10618-024-01017-y","DOIUrl":null,"url":null,"abstract":"<p>We introduce MCCE: <span>\\({{{\\underline{\\varvec{M}}}}}\\)</span>onte <span>\\({{{\\underline{\\varvec{C}}}}}\\)</span>arlo sampling of valid and realistic <span>\\({{{\\underline{\\varvec{C}}}}}\\)</span>ounterfactual <span>\\({{{\\underline{\\varvec{E}}}}}\\)</span>xplanations for tabular data, a novel counterfactual explanation method that generates on-manifold, actionable and valid counterfactuals by modeling the joint distribution of the mutable features given the immutable features and the decision. Unlike other on-manifold methods that tend to rely on variational autoencoders and have strict prediction model and data requirements, MCCE handles any type of prediction model and categorical features with more than two levels. MCCE first models the joint distribution of the features and the decision with an autoregressive generative model where the conditionals are estimated using decision trees. Then, it samples a large set of observations from this model, and finally, it removes the samples that do not obey certain criteria. We compare MCCE with a range of state-of-the-art on-manifold counterfactual methods using four well-known data sets and show that MCCE outperforms these methods on all common performance metrics and speed. In particular, including the decision in the modeling process improves the efficiency of the method substantially.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"365 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01017-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce MCCE: \({{{\underline{\varvec{M}}}}}\)onte \({{{\underline{\varvec{C}}}}}\)arlo sampling of valid and realistic \({{{\underline{\varvec{C}}}}}\)ounterfactual \({{{\underline{\varvec{E}}}}}\)xplanations for tabular data, a novel counterfactual explanation method that generates on-manifold, actionable and valid counterfactuals by modeling the joint distribution of the mutable features given the immutable features and the decision. Unlike other on-manifold methods that tend to rely on variational autoencoders and have strict prediction model and data requirements, MCCE handles any type of prediction model and categorical features with more than two levels. MCCE first models the joint distribution of the features and the decision with an autoregressive generative model where the conditionals are estimated using decision trees. Then, it samples a large set of observations from this model, and finally, it removes the samples that do not obey certain criteria. We compare MCCE with a range of state-of-the-art on-manifold counterfactual methods using four well-known data sets and show that MCCE outperforms these methods on all common performance metrics and speed. In particular, including the decision in the modeling process improves the efficiency of the method substantially.

Abstract Image

MCCE:对表格数据的有效和现实的反事实解释进行蒙特卡洛采样
我们介绍 MCCE:\针对表格数据的有效和现实的反事实解释({{underline{/varvec{M}}}}}\onte &({{{underline{/varvec{C}}}}}\)arlo sampling of valid and realistic &({{{underline{/varvec{C}}}}}\)unterfactual &({{{underline{/varvec{E}}}}}\)xplanations for tabular data)、这是一种新颖的反事实解释方法,通过给定不可变特征和决策,对可变特征的联合分布进行建模,生成可操作的有效反事实。与其他往往依赖变异自动编码器并对预测模型和数据有严格要求的manifold方法不同,MCCE可处理任何类型的预测模型和两级以上的分类特征。MCCE 首先使用自回归生成模型对特征和决策的联合分布进行建模,其中的条件使用决策树进行估计。然后,它从该模型中抽取大量观察样本,最后剔除不符合特定标准的样本。我们使用四个著名的数据集将 MCCE 与一系列最先进的本体反事实方法进行了比较,结果表明 MCCE 在所有常见性能指标和速度上都优于这些方法。特别是,将决策纳入建模过程大大提高了该方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data Mining and Knowledge Discovery
Data Mining and Knowledge Discovery 工程技术-计算机:人工智能
CiteScore
10.40
自引率
4.20%
发文量
68
审稿时长
10 months
期刊介绍: Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信