{"title":"Generating operators of symmetry breaking—From discrete to continuous","authors":"Toshiyuki Kobayashi","doi":"10.1016/j.indag.2024.03.007","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the “generating operator” of the Rankin–Cohen brackets introduced in Kobayashi–Pevzner [arXiv:2306.16800], we present a method to construct various fundamental operators with continuous parameters such as invariant trilinear forms on infinite-dimensional representations, the Fourier and the Poisson transforms on the anti-de Sitter space, and integral symmetry breaking<span><span> operators for the fusion rules, among others, out of a countable set of differential </span>symmetry breaking operators.</span></div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 2","pages":"Pages 631-643"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000181","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the “generating operator” of the Rankin–Cohen brackets introduced in Kobayashi–Pevzner [arXiv:2306.16800], we present a method to construct various fundamental operators with continuous parameters such as invariant trilinear forms on infinite-dimensional representations, the Fourier and the Poisson transforms on the anti-de Sitter space, and integral symmetry breaking operators for the fusion rules, among others, out of a countable set of differential symmetry breaking operators.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.