A fast simulation method for thermal management in wire arc additive manufacturing repair of a thin-walled structure

IF 2.9 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS
Paul Qvale, Eirik B. Njaastad, Torgeir Bræin, Xiaobo Ren
{"title":"A fast simulation method for thermal management in wire arc additive manufacturing repair of a thin-walled structure","authors":"Paul Qvale, Eirik B. Njaastad, Torgeir Bræin, Xiaobo Ren","doi":"10.1007/s00170-024-13427-9","DOIUrl":null,"url":null,"abstract":"<p>Ensuring first-time-right on-site repair of critical structures is a key challenge for additive manufacturing (AM)–based repair solutions. Fast thermal simulations are thus needed to plan efficient and error-free AM processes. This paper addresses a fast thermal simulation method for a novel subsea wire arc additive manufacturing (SWAAM) repair procedure. Current commercial finite element (FE) codes for typical welding and AM are computationally expensive and slow. The presented 2D finite difference approach can be used to simulate SWAAM on a damaged plate with around 70 times acceleration compared to real welding times, without the use of parallelization. Although not being able to accurately represent the temperature in close vicinity of the welding torch, the approach shows excellent correspondence with FE simulations and experiments in regions of the plate where the temperature has assumed a distribution that is largely two-dimensional. Compared with FE simulations, the approach is experimentally verified to be accurate to 10 °C within 7 s after the welding torch has passed a point on the plate. Thus, the approach can provide a measure of the global temperature field in a thin-walled structure during repair. The thermal simulation is preceded by a welding path planner, which generates appropriate paths based on slicing of a 3D surface scan of the damage that is to be repaired. Damages to equipment or non-ideal welding conditions are prevented by automatically pausing the welding if the calculated temperature in the path ahead of the welding torch exceeds a predefined interpass temperature limit.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"28 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13427-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring first-time-right on-site repair of critical structures is a key challenge for additive manufacturing (AM)–based repair solutions. Fast thermal simulations are thus needed to plan efficient and error-free AM processes. This paper addresses a fast thermal simulation method for a novel subsea wire arc additive manufacturing (SWAAM) repair procedure. Current commercial finite element (FE) codes for typical welding and AM are computationally expensive and slow. The presented 2D finite difference approach can be used to simulate SWAAM on a damaged plate with around 70 times acceleration compared to real welding times, without the use of parallelization. Although not being able to accurately represent the temperature in close vicinity of the welding torch, the approach shows excellent correspondence with FE simulations and experiments in regions of the plate where the temperature has assumed a distribution that is largely two-dimensional. Compared with FE simulations, the approach is experimentally verified to be accurate to 10 °C within 7 s after the welding torch has passed a point on the plate. Thus, the approach can provide a measure of the global temperature field in a thin-walled structure during repair. The thermal simulation is preceded by a welding path planner, which generates appropriate paths based on slicing of a 3D surface scan of the damage that is to be repaired. Damages to equipment or non-ideal welding conditions are prevented by automatically pausing the welding if the calculated temperature in the path ahead of the welding torch exceeds a predefined interpass temperature limit.

Abstract Image

线弧增材制造薄壁结构修复热管理的快速模拟方法
确保第一时间对关键结构进行正确的现场修复,是基于快速成型制造(AM)的修复解决方案所面临的主要挑战。因此,需要进行快速热模拟,以规划高效、无差错的快速成型工艺。本文探讨了一种新型海底线弧快速成型制造(SWAAM)修复过程的快速热模拟方法。目前用于典型焊接和 AM 的商用有限元 (FE) 代码计算成本高且速度慢。所介绍的二维有限差分方法可用于模拟受损板材上的 SWAAM,与实际焊接时间相比,速度加快了约 70 倍,且无需使用并行化。虽然该方法无法准确表示焊枪附近的温度,但在温度分布基本为二维的板材区域,该方法与有限元模拟和实验显示出极佳的对应性。经实验验证,与有限元模拟相比,该方法可在焊枪通过板上某点后 7 秒内精确到 10 °C。因此,该方法可以测量维修过程中薄壁结构的整体温度场。在进行热模拟之前,需要先进行焊接路径规划,根据待修复损伤的三维表面扫描切片生成合适的路径。如果焊枪前方路径上的计算温度超过预先设定的通过间温度限制,则会自动暂停焊接,从而防止设备损坏或焊接条件不理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
17.60%
发文量
2008
审稿时长
62 days
期刊介绍: The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信