Neural Downscaling for Complex Systems: from Large-scale to Small-scale by Neural Operator

Pengyu Lai, Jing Wang, Rui Wang, Dewu Yang, Haoqi Fei, Hui Xu
{"title":"Neural Downscaling for Complex Systems: from Large-scale to Small-scale by Neural Operator","authors":"Pengyu Lai, Jing Wang, Rui Wang, Dewu Yang, Haoqi Fei, Hui Xu","doi":"arxiv-2403.13016","DOIUrl":null,"url":null,"abstract":"Predicting and understanding the chaotic dynamics in complex systems is\nessential in various applications. However, conventional approaches, whether\nfull-scale simulations or small-scale omissions, fail to offer a comprehensive\nsolution. This instigates exploration into whether modeling or omitting\nsmall-scale dynamics could benefit from the well-captured large-scale dynamics.\nIn this paper, we introduce a novel methodology called Neural Downscaling (ND),\nwhich integrates neural operator techniques with the principles of inertial\nmanifold and nonlinear Galerkin theory. ND effectively infers small-scale\ndynamics within a complementary subspace from corresponding large-scale\ndynamics well-represented in a low-dimensional space. The effectiveness and\ngeneralization of the method are demonstrated on the complex systems governed\nby the Kuramoto-Sivashinsky and Navier-Stokes equations. As the first\ncomprehensive deterministic model targeting small-scale dynamics, ND sheds\nlight on the intricate spatiotemporal nonlinear dynamics of complex systems,\nrevealing how small-scale dynamics are intricately linked with and influenced\nby large-scale dynamics.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"102 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.13016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting and understanding the chaotic dynamics in complex systems is essential in various applications. However, conventional approaches, whether full-scale simulations or small-scale omissions, fail to offer a comprehensive solution. This instigates exploration into whether modeling or omitting small-scale dynamics could benefit from the well-captured large-scale dynamics. In this paper, we introduce a novel methodology called Neural Downscaling (ND), which integrates neural operator techniques with the principles of inertial manifold and nonlinear Galerkin theory. ND effectively infers small-scale dynamics within a complementary subspace from corresponding large-scale dynamics well-represented in a low-dimensional space. The effectiveness and generalization of the method are demonstrated on the complex systems governed by the Kuramoto-Sivashinsky and Navier-Stokes equations. As the first comprehensive deterministic model targeting small-scale dynamics, ND sheds light on the intricate spatiotemporal nonlinear dynamics of complex systems, revealing how small-scale dynamics are intricately linked with and influenced by large-scale dynamics.
复杂系统的神经降尺度:从大规模到小规模的神经运算器
预测和理解复杂系统中的混沌动力学在各种应用中至关重要。然而,传统方法,无论是全尺度模拟还是忽略小尺度,都无法提供全面的解决方案。在本文中,我们介绍了一种名为神经降尺度(ND)的新方法,它将神经算子技术与惯性manifold 和非线性 Galerkin 理论相结合。ND 可有效地从在低维空间中得到良好体现的相应大尺度动力学推导出互补子空间中的小尺度动力学。在 Kuramoto-Sivashinsky 和 Navier-Stokes 方程所支配的复杂系统中,证明了该方法的有效性和通用性。作为第一个针对小尺度动力学的综合确定性模型,ND 揭示了复杂系统错综复杂的时空非线性动力学,揭示了小尺度动力学如何与大尺度动力学错综复杂地联系在一起并受其影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信