{"title":"Numerical model establishment and experimental study of milling head cooling water flow rate","authors":"","doi":"10.1007/s00170-024-13308-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The thermal error suppression rate depends on the cooling effect of the water cooling system, and the cooling water flow rate is a direct factor affecting the cooling effect. To better reduce the thermal error, a numerical model of cooling water is established to solve for the optimal cooling water flow rate. Firstly, a numerical model of thermal deformation of the pendulum angle milling head is established based on thermoelasticity theory to determine the main heat sources leading to thermal deformation. Then, a numerical analysis model of the cooling water flow rate is established to investigate the cooling water flow rate that has the best effect on the suppression of thermal errors. Finally, five flow rates are used for cooling experiments to verify the accuracy of the numerical model. The results show that the temperature of each measurement point increases with the flow rate from a significant decrease to the basic constant trend of gradual saturation. The reduction rate of thermal error at <em>v</em>=54 cm/s is as high as 73.4%, providing a theoretical basis for enterprises to optimize water cooling system parameters.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13308-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The thermal error suppression rate depends on the cooling effect of the water cooling system, and the cooling water flow rate is a direct factor affecting the cooling effect. To better reduce the thermal error, a numerical model of cooling water is established to solve for the optimal cooling water flow rate. Firstly, a numerical model of thermal deformation of the pendulum angle milling head is established based on thermoelasticity theory to determine the main heat sources leading to thermal deformation. Then, a numerical analysis model of the cooling water flow rate is established to investigate the cooling water flow rate that has the best effect on the suppression of thermal errors. Finally, five flow rates are used for cooling experiments to verify the accuracy of the numerical model. The results show that the temperature of each measurement point increases with the flow rate from a significant decrease to the basic constant trend of gradual saturation. The reduction rate of thermal error at v=54 cm/s is as high as 73.4%, providing a theoretical basis for enterprises to optimize water cooling system parameters.
期刊介绍:
The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.