Infinitely many solutions for Schrödinger equations with Hardy potential and Berestycki-Lions conditions

IF 1 4区 数学 Q1 MATHEMATICS
Shan Zhou
{"title":"Infinitely many solutions for Schrödinger equations with Hardy potential and Berestycki-Lions conditions","authors":"Shan Zhou","doi":"10.1515/math-2023-0175","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the following Schrödinger equation: <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0175_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>−</m:mo> <m:mfrac> <m:mrow> <m:mi>μ</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>x</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:mfrac> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\"1em\" /> <m:mi mathvariant=\"normal\">in</m:mi> <m:mspace width=\"0.33em\" /> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:math> <jats:tex-math>-\\Delta u-\\frac{\\mu }{{| x| }^{2}}u=g\\left(u)\\hspace{1em}{\\rm{in}}\\hspace{0.33em}{{\\mathbb{R}}}^{N},</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0175_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>N\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0175_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mfrac> <m:mrow> <m:mi>μ</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>x</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:mfrac> </m:math> <jats:tex-math>\\frac{\\mu }{{| x| }^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is called the Hardy potential and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0175_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> <jats:tex-math>g</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies Berestycki-Lions conditions. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0175_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>μ</m:mi> <m:mo>&lt;</m:mo> <m:mfrac> <m:mrow> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mn>4</m:mn> </m:mrow> </m:mfrac> </m:math> <jats:tex-math>0\\lt \\mu \\lt \\frac{{\\left(N-2)}^{2}}{4}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we will take symmetric mountain pass approaches to prove the existence of infinitely many solutions of this problem.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0175","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate the following Schrödinger equation: Δ u μ x 2 u = g ( u ) in R N , -\Delta u-\frac{\mu }{{| x| }^{2}}u=g\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{N}, where N 3 N\ge 3 , μ x 2 \frac{\mu }{{| x| }^{2}} is called the Hardy potential and g g satisfies Berestycki-Lions conditions. If 0 < μ < ( N 2 ) 2 4 0\lt \mu \lt \frac{{\left(N-2)}^{2}}{4} , we will take symmetric mountain pass approaches to prove the existence of infinitely many solutions of this problem.
具有哈代势和贝里切基-狮子条件的薛定谔方程的无限多解
本文将研究以下薛定谔方程: - Δ u - μ ∣ x ∣ 2 u = g ( u ) in R N , -\Delta u-\frac\{mu }{{| x| }^{2}}u=g\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{mathbb{R}}}^{N},其中 N ≥ 3 N\ge 3 ,μ ∣ x∣ 2 \frac{\mu }{{| x| }^{2}}称为哈代势,g g 满足贝里切基-狮子条件。如果 0 < μ < ( N - 2 ) 2 4 0\lt \mu \lt \frac\{left(N-2)}^{2}}{4} ,我们将取对称的山形。 我们将采用对称山口法来证明这个问题存在无穷多个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信