{"title":"Infinitely many solutions for Schrödinger equations with Hardy potential and Berestycki-Lions conditions","authors":"Shan Zhou","doi":"10.1515/math-2023-0175","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the following Schrödinger equation: <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0175_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>−</m:mo> <m:mfrac> <m:mrow> <m:mi>μ</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>x</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:mfrac> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\"1em\" /> <m:mi mathvariant=\"normal\">in</m:mi> <m:mspace width=\"0.33em\" /> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:math> <jats:tex-math>-\\Delta u-\\frac{\\mu }{{| x| }^{2}}u=g\\left(u)\\hspace{1em}{\\rm{in}}\\hspace{0.33em}{{\\mathbb{R}}}^{N},</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0175_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>N\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0175_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mfrac> <m:mrow> <m:mi>μ</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>x</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:mfrac> </m:math> <jats:tex-math>\\frac{\\mu }{{| x| }^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is called the Hardy potential and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0175_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> <jats:tex-math>g</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies Berestycki-Lions conditions. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0175_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>μ</m:mi> <m:mo><</m:mo> <m:mfrac> <m:mrow> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mn>4</m:mn> </m:mrow> </m:mfrac> </m:math> <jats:tex-math>0\\lt \\mu \\lt \\frac{{\\left(N-2)}^{2}}{4}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we will take symmetric mountain pass approaches to prove the existence of infinitely many solutions of this problem.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0175","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we investigate the following Schrödinger equation: −Δu−μ∣x∣2u=g(u)inRN,-\Delta u-\frac{\mu }{{| x| }^{2}}u=g\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{N}, where N≥3N\ge 3, μ∣x∣2\frac{\mu }{{| x| }^{2}} is called the Hardy potential and gg satisfies Berestycki-Lions conditions. If 0<μ<(N−2)240\lt \mu \lt \frac{{\left(N-2)}^{2}}{4}, we will take symmetric mountain pass approaches to prove the existence of infinitely many solutions of this problem.
期刊介绍:
Open Mathematics - formerly Central European Journal of Mathematics
Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
Aims and Scope
The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes: