A Note on the Markovian SIR Epidemic on a Random Graph with Given Degrees

Pub Date : 2024-03-24 DOI:10.1007/s10959-024-01320-w
{"title":"A Note on the Markovian SIR Epidemic on a Random Graph with Given Degrees","authors":"","doi":"10.1007/s10959-024-01320-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We consider a Markovian model of an SIR epidemic spreading on a contact graph that is drawn uniformly at random from the set of all graphs with <em>n</em> vertices and given vertex degrees. Janson, Luczak and Windridge (Random Struct Alg 45(4):724–761, 2014) prove that the evolution of such an epidemic is well approximated by the solution to a simple set of differential equations, thus providing probabilistic underpinnings to the works of Miller (J Math Biol 62(3):349–358, 2011) and Volz (J Math Biol 56(3):293–310, 2008). The present paper provides an additional probabilistic interpretation of the limiting deterministic functions in Janson, Luczak and Windridge (Random Struct Alg 45(4):724–761, 2014), thus clarifying further the connection between their results and the results of Miller and Volz.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01320-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Markovian model of an SIR epidemic spreading on a contact graph that is drawn uniformly at random from the set of all graphs with n vertices and given vertex degrees. Janson, Luczak and Windridge (Random Struct Alg 45(4):724–761, 2014) prove that the evolution of such an epidemic is well approximated by the solution to a simple set of differential equations, thus providing probabilistic underpinnings to the works of Miller (J Math Biol 62(3):349–358, 2011) and Volz (J Math Biol 56(3):293–310, 2008). The present paper provides an additional probabilistic interpretation of the limiting deterministic functions in Janson, Luczak and Windridge (Random Struct Alg 45(4):724–761, 2014), thus clarifying further the connection between their results and the results of Miller and Volz.

分享
查看原文
关于给定度数随机图上马尔可夫 SIR 流行病的说明
摘要 我们考虑了在接触图上传播 SIR 流行病的马尔可夫模型,该接触图是从具有 n 个顶点和给定顶点度的所有图集中均匀随机抽取的。Janson、Luczak 和 Windridge(Random Struct Alg 45(4):724-761, 2014)证明,这种流行病的演化可以通过一组简单微分方程的解很好地近似,从而为 Miller(J Math Biol 62(3):349-358, 2011)和 Volz(J Math Biol 56(3):293-310, 2008)的研究提供了概率论基础。本文对 Janson、Luczak 和 Windridge (Random Struct Alg 45(4):724-761, 2014) 中的极限确定性函数提供了额外的概率解释,从而进一步阐明了他们的结果与 Miller 和 Volz 的结果之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信