Sequences with ideal auto-correlation derived from group actions

Hongyang Xiao, Xiwang Cao
{"title":"Sequences with ideal auto-correlation derived from group actions","authors":"Hongyang Xiao, Xiwang Cao","doi":"10.1007/s12095-024-00710-5","DOIUrl":null,"url":null,"abstract":"<p>Bent functions have a number of practical applications in cryptography, coding theory, and other fields. Fourier transform is a key tool to study bent functions on finite abelian groups. Using Fourier transforms, in this paper, we first present two necessary and sufficient conditions on the existence of bent functions via faithful actions of finite abelian groups and then show two constructions of sequences with ideal auto-correlation (SIACs). In addition, we construct a periodic complementary sequence set (PCSS) by rearranging a periodic multiple shift sequence (PMSS) corresponding to a bent function on a finite abelian group. Some concrete constructions of SIACs and PCSSs are provided to illustrate the efficiency of our methods.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"306 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00710-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bent functions have a number of practical applications in cryptography, coding theory, and other fields. Fourier transform is a key tool to study bent functions on finite abelian groups. Using Fourier transforms, in this paper, we first present two necessary and sufficient conditions on the existence of bent functions via faithful actions of finite abelian groups and then show two constructions of sequences with ideal auto-correlation (SIACs). In addition, we construct a periodic complementary sequence set (PCSS) by rearranging a periodic multiple shift sequence (PMSS) corresponding to a bent function on a finite abelian group. Some concrete constructions of SIACs and PCSSs are provided to illustrate the efficiency of our methods.

由群体行为得出的具有理想自相关性的序列
弯曲函数在密码学、编码理论和其他领域有许多实际应用。傅立叶变换是研究有限无边群上弯曲函数的重要工具。本文利用傅立叶变换,首先提出了通过有限无边群的忠实作用实现弯曲函数存在的两个必要条件和充分条件,然后展示了两种具有理想自相关性的序列(SIAC)的构造。此外,我们还通过重新排列与有限无边群上的弯曲函数相对应的周期性多移序列(PMSS),构建了周期性互补序列集(PCSS)。我们提供了一些 SIAC 和 PCSS 的具体构造,以说明我们方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信