{"title":"Neutrino Emission of Neutron-Star Superbursts","authors":"A. D. Kaminker, A. Yu. Potekhin, D. G. Yakovlev","doi":"10.1134/S1063773723120034","DOIUrl":null,"url":null,"abstract":"<p>Superbursts of neutron stars are rare but powerful events explained by the explosive burning of carbon in the deep layers of the outer envelope of the star. In this paper we perform a simulation of superbursts and propose a simple method for describing the neutrino stage of their cooling, as well as a method for describing the evolution of the burst energy on a scale of several months. We note a universal relation for the temperature distribution in the burnt layer at its neutrino cooling stage, as well as the unification of bolometric light curves and neutrino heat loss rates for deep and powerful bursts. We point out the possibility of long-term retention of the burst energy in the star’s envelope. The results can be useful for interpretation of superburst observations.</p>","PeriodicalId":55443,"journal":{"name":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","volume":"49 12","pages":"824 - 832"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063773723120034","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Superbursts of neutron stars are rare but powerful events explained by the explosive burning of carbon in the deep layers of the outer envelope of the star. In this paper we perform a simulation of superbursts and propose a simple method for describing the neutrino stage of their cooling, as well as a method for describing the evolution of the burst energy on a scale of several months. We note a universal relation for the temperature distribution in the burnt layer at its neutrino cooling stage, as well as the unification of bolometric light curves and neutrino heat loss rates for deep and powerful bursts. We point out the possibility of long-term retention of the burst energy in the star’s envelope. The results can be useful for interpretation of superburst observations.
期刊介绍:
Astronomy Letters is an international peer reviewed journal that publishes the results of original research on all aspects of modern astronomy and astrophysics including high energy astrophysics, cosmology, space astronomy, theoretical astrophysics, radio astronomy, extragalactic astronomy, stellar astronomy, and investigation of the Solar system.