Estimates related to the iterates of positive linear operators and their multidimensional analogues

IF 0.8 3区 数学 Q2 MATHEMATICS
Octavian Agratini, Radu Precup
{"title":"Estimates related to the iterates of positive linear operators and their multidimensional analogues","authors":"Octavian Agratini, Radu Precup","doi":"10.1007/s11117-024-01045-4","DOIUrl":null,"url":null,"abstract":"<p>The starting point of this paper is the construction of a general family <span>\\( (L_{n})_{n\\ge 1}\\)</span> of positive linear operators of discrete type. Considering <span>\\((L_{n}^{k})_{k\\ge 1}\\)</span> the sequence of iterates of one of such operators, <span>\\(L_{n}\\)</span>, our goal is to find an expression of the upper edge of the error <span>\\(\\Vert L_{n}^{k}f-f^{*}\\Vert \\)</span>, <span>\\(f\\in C[0,1]\\)</span>, where <span>\\(f^{*} \\)</span> is the fixed point of <span>\\(L_{n}.\\)</span> The estimate makes use of the error formula for the sequence of successive approximations in Banach’s fixed point theorem and the error of approximation of the operator <span>\\(L_{n}.\\)</span> Examples of special operators are inserted. Some extensions to multidimensional approximation operators are also given.\n</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01045-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The starting point of this paper is the construction of a general family \( (L_{n})_{n\ge 1}\) of positive linear operators of discrete type. Considering \((L_{n}^{k})_{k\ge 1}\) the sequence of iterates of one of such operators, \(L_{n}\), our goal is to find an expression of the upper edge of the error \(\Vert L_{n}^{k}f-f^{*}\Vert \), \(f\in C[0,1]\), where \(f^{*} \) is the fixed point of \(L_{n}.\) The estimate makes use of the error formula for the sequence of successive approximations in Banach’s fixed point theorem and the error of approximation of the operator \(L_{n}.\) Examples of special operators are inserted. Some extensions to multidimensional approximation operators are also given.

与正线性算子迭代相关的估计值及其多维类似物
本文的出发点是构建离散型正线性算子的一般族 \( (L_{n})_{n\ge 1}\) 。考虑到 \((L_{n}^{k})_{k\ge 1}\) 是其中一个算子的迭代序列,即 \(L_{n}\)、我们的目标是找到误差上沿的表达式(\Vert L_{n}^{k}f-f^{*}\Vert \),(f\in C[0,1]\),其中\(f^{*} \)是(L_{n}.)的固定点。\) 估计利用了巴纳赫定点定理中连续逼近序列的误差公式以及算子 \(L_{n}.\) 的逼近误差。还给出了对多维近似算子的一些扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信