Plane-fronted electromagnetic waves and an asymptotic limit of Liénard–Wiechert fields

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Peter A. Hogan, Dirk Puetzfeld
{"title":"Plane-fronted electromagnetic waves and an asymptotic limit of Liénard–Wiechert fields","authors":"Peter A. Hogan, Dirk Puetzfeld","doi":"10.1142/s0218271824500093","DOIUrl":null,"url":null,"abstract":"<p>Colliding or noncolliding plane-fronted electromagnetic or gravitational waves are the asymptotic limit of Robinson–Trautman spherical electromagnetic or gravitational waves. Noncolliding plane-fronted waves contain no information about their sources whereas colliding waves contain information about possibly the motion of their sources. As a first step to investigate the latter phenomenon, we construct an asymptotic limit of Liénard–Wiechert electromagnetic fields in the context of Minkowskian spacetime. This has the advantage that the source is well known and the calculations can be carried out in full detail. The final result is an algebraically general Maxwell field which consists of colliding plane-fronted waves in a subregion of Minkowskian spacetime and an interesting byproduct is a novel perspective on a Maxwell field originally discovered by Bateman.</p>","PeriodicalId":50307,"journal":{"name":"International Journal of Modern Physics D","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0218271824500093","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Colliding or noncolliding plane-fronted electromagnetic or gravitational waves are the asymptotic limit of Robinson–Trautman spherical electromagnetic or gravitational waves. Noncolliding plane-fronted waves contain no information about their sources whereas colliding waves contain information about possibly the motion of their sources. As a first step to investigate the latter phenomenon, we construct an asymptotic limit of Liénard–Wiechert electromagnetic fields in the context of Minkowskian spacetime. This has the advantage that the source is well known and the calculations can be carried out in full detail. The final result is an algebraically general Maxwell field which consists of colliding plane-fronted waves in a subregion of Minkowskian spacetime and an interesting byproduct is a novel perspective on a Maxwell field originally discovered by Bateman.

平面电磁波和李纳-维切特场的渐近极限
碰撞或非碰撞平面电磁波或引力波是罗宾逊-特劳特曼球面电磁波或引力波的渐近极限。非对撞平面波不包含任何有关其来源的信息,而对撞波则包含可能有关其来源运动的信息。作为研究后一种现象的第一步,我们在闵科夫斯基时空中构建了李纳-维切特电磁场的渐近极限。这样做的好处是,源是众所周知的,可以进行全面详细的计算。最后的结果是一个代数上一般的麦克斯韦场,它由明科夫斯基时空中一个子区域中碰撞的平面波组成,一个有趣的副产品是对贝特曼最初发现的麦克斯韦场的一个新视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Modern Physics D
International Journal of Modern Physics D 地学天文-天文与天体物理
CiteScore
3.80
自引率
9.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Gravitation, astrophysics and cosmology are exciting and rapidly advancing fields of research. This journal aims to accommodate and promote this expansion of information and ideas and it features research papers and reviews on theoretical, observational and experimental findings in these fields. Among the topics covered are general relativity, quantum gravity, gravitational experiments, quantum cosmology, observational cosmology, particle cosmology, large scale structure, high energy astrophysics, compact objects, cosmic particles and radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信