{"title":"Predictors of biochemical response to somatostatin receptor ligands in acromegaly","authors":"","doi":"10.1016/j.beem.2024.101893","DOIUrl":null,"url":null,"abstract":"<div><p>Although predictors of response to first-generation somatostatin receptor ligands (fg-SRLs), and to a lesser extent to pasireotide, have been studied in acromegaly for many years, their use is still not recommended in clinical guidelines. Is there insufficient evidence to use them? Numerous biomarkers including various clinical, functional, radiological and molecular markers have been identified. The first ones are applicable pre-surgery, while the molecular predictors are utilized for patients not cured after surgery. In this regard, factors predicting a good response to fg-SRLs are specifically: low basal GH, a low GH nadir in the acute octreotide test, T2 MRI hypointensity, a densely granulated pattern, high immunohistochemistry staining for somatostatin receptor 2 (SSTR2), and E-cadherin. However, there is still a lack of consensus regarding which of these biomarkers is more useful or how to integrate them into clinical practice. With classical statistical methods, it is complex to define reliable and generalizable cut-off values for a single biomarker. The potential solution to the limitations of traditional methods involves combining systems biology with artificial intelligence, which is currently providing answers to such long-standing questions that may eventually be finally included into the clinical guidelines and make personalized medicine a reality. The aim of this review is to describe the current knowledge of the main fg-SRLs and pasireotide response predictors, discuss their current usefulness, and point to future directions in the research of this field.</p></div>","PeriodicalId":8810,"journal":{"name":"Best practice & research. Clinical endocrinology & metabolism","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1521690X24000472/pdfft?md5=a16abdeb32a7f3c68257d4af90b7a1e9&pid=1-s2.0-S1521690X24000472-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Best practice & research. Clinical endocrinology & metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1521690X24000472","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Although predictors of response to first-generation somatostatin receptor ligands (fg-SRLs), and to a lesser extent to pasireotide, have been studied in acromegaly for many years, their use is still not recommended in clinical guidelines. Is there insufficient evidence to use them? Numerous biomarkers including various clinical, functional, radiological and molecular markers have been identified. The first ones are applicable pre-surgery, while the molecular predictors are utilized for patients not cured after surgery. In this regard, factors predicting a good response to fg-SRLs are specifically: low basal GH, a low GH nadir in the acute octreotide test, T2 MRI hypointensity, a densely granulated pattern, high immunohistochemistry staining for somatostatin receptor 2 (SSTR2), and E-cadherin. However, there is still a lack of consensus regarding which of these biomarkers is more useful or how to integrate them into clinical practice. With classical statistical methods, it is complex to define reliable and generalizable cut-off values for a single biomarker. The potential solution to the limitations of traditional methods involves combining systems biology with artificial intelligence, which is currently providing answers to such long-standing questions that may eventually be finally included into the clinical guidelines and make personalized medicine a reality. The aim of this review is to describe the current knowledge of the main fg-SRLs and pasireotide response predictors, discuss their current usefulness, and point to future directions in the research of this field.
期刊介绍:
Best Practice & Research Clinical Endocrinology & Metabolism is a serial publication that integrates the latest original research findings into evidence-based review articles. These articles aim to address key clinical issues related to diagnosis, treatment, and patient management.
Each issue adopts a problem-oriented approach, focusing on key questions and clearly outlining what is known while identifying areas for future research. Practical management strategies are described to facilitate application to individual patients. The series targets physicians in practice or training.