Determinantal Representations and the Image of the Principal Minor Map

IF 0.9 2区 数学 Q2 MATHEMATICS
Abeer Al Ahmadieh, Cynthia Vinzant
{"title":"Determinantal Representations and the Image of the Principal Minor Map","authors":"Abeer Al Ahmadieh, Cynthia Vinzant","doi":"10.1093/imrn/rnae038","DOIUrl":null,"url":null,"abstract":"In this paper we explore determinantal representations of multiaffine polynomials and consequences for the image of various spaces of matrices under the principal minor map. We show that a real multiaffine polynomial has a definite Hermitian determinantal representation if and only if all of its so-called Rayleigh differences factor as Hermitian squares and use this characterization to conclude that the image of the space of Hermitian matrices under the principal minor map is cut out by the orbit of finitely many equations and inequalities under the action of $(\\textrm{SL}_{2}(\\mathbb{R}))^{n} \\rtimes S_{n}$. We also study such representations over more general fields with quadratic extensions. Factorizations of Rayleigh differences prove an effective tool for capturing subtle behavior of the principal minor map. In contrast to the Hermitian case, we give examples to show for any field $\\mathbb{F}$, there is no finite set of equations whose orbit under $(\\textrm{SL}_{2}(\\mathbb{F}))^{n} \\rtimes S_{n}$ cuts out the image of $n\\times n$ matrices over ${\\mathbb{F}}$ under the principal minor map for every $n$.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"162 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae038","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we explore determinantal representations of multiaffine polynomials and consequences for the image of various spaces of matrices under the principal minor map. We show that a real multiaffine polynomial has a definite Hermitian determinantal representation if and only if all of its so-called Rayleigh differences factor as Hermitian squares and use this characterization to conclude that the image of the space of Hermitian matrices under the principal minor map is cut out by the orbit of finitely many equations and inequalities under the action of $(\textrm{SL}_{2}(\mathbb{R}))^{n} \rtimes S_{n}$. We also study such representations over more general fields with quadratic extensions. Factorizations of Rayleigh differences prove an effective tool for capturing subtle behavior of the principal minor map. In contrast to the Hermitian case, we give examples to show for any field $\mathbb{F}$, there is no finite set of equations whose orbit under $(\textrm{SL}_{2}(\mathbb{F}))^{n} \rtimes S_{n}$ cuts out the image of $n\times n$ matrices over ${\mathbb{F}}$ under the principal minor map for every $n$.
主小地图的确定性表示和图像
在本文中,我们探讨了多非线性多项式的行列式表示,以及在主次映射下各种矩阵空间图像的后果。我们证明,当且仅当一个实多芬多项式的所有所谓雷利差分因子都是赫米方差时,它才有一个确定的赫米矩阵行列式表示,并利用这一特征得出结论:在主次映射下的赫米矩阵空间的图像是由 $(\textrm{SL}_{2}(\mathbb{R}))^{n} 作用下的有限多个方程和不等式的轨道切割出来的。\rtimes S_{n}$。我们还研究了具有二次扩展的更一般域上的此类表示。瑞利差分的因式分解证明是捕捉主次映射微妙行为的有效工具。与赫米特情况相反,我们举例说明,对于任何域 $\mathbb{F}$ ,都不存在其轨道在 $(textrm{SL}_{2}(\mathbb{F}))^{n} 下的有限方程组。\rtimes S_{n}$ 在主次要映射下为每个 $n$ 切出 $n\times n$ 矩阵在 ${{mathbb{F}}$ 上的映像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信