Variable selection using axis-aligned random projections for partial least-squares regression

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
{"title":"Variable selection using axis-aligned random projections for partial least-squares regression","authors":"","doi":"10.1007/s11222-024-10417-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In high-dimensional data modeling, variable selection plays a crucial role in improving predictive accuracy and enhancing model interpretability through sparse representation. Unfortunately, certain variable selection methods encounter challenges such as insufficient model sparsity, high computational overhead, and difficulties in handling large-scale data. Recently, axis-aligned random projection techniques have been applied to address these issues by selecting variables. However, these techniques have seen limited application in handling complex data within the regression framework. In this study, we propose a novel method, sparse partial least squares via axis-aligned random projection, designed for the analysis of high-dimensional data. Initially, axis-aligned random projection is utilized to obtain a sparse loading vector, significantly reducing computational complexity. Subsequently, partial least squares regression is conducted within the subspace of the top-ranked significant variables. The submatrices are iteratively updated until an optimal sparse partial least squares model is achieved. Comparative analysis with some state-of-the-art high-dimensional regression methods demonstrates that the proposed method exhibits superior predictive performance. To illustrate its effectiveness, we apply the method to four cases, including one simulated dataset and three real-world datasets. The results show the proposed method’s ability to identify important variables in all four cases.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10417-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In high-dimensional data modeling, variable selection plays a crucial role in improving predictive accuracy and enhancing model interpretability through sparse representation. Unfortunately, certain variable selection methods encounter challenges such as insufficient model sparsity, high computational overhead, and difficulties in handling large-scale data. Recently, axis-aligned random projection techniques have been applied to address these issues by selecting variables. However, these techniques have seen limited application in handling complex data within the regression framework. In this study, we propose a novel method, sparse partial least squares via axis-aligned random projection, designed for the analysis of high-dimensional data. Initially, axis-aligned random projection is utilized to obtain a sparse loading vector, significantly reducing computational complexity. Subsequently, partial least squares regression is conducted within the subspace of the top-ranked significant variables. The submatrices are iteratively updated until an optimal sparse partial least squares model is achieved. Comparative analysis with some state-of-the-art high-dimensional regression methods demonstrates that the proposed method exhibits superior predictive performance. To illustrate its effectiveness, we apply the method to four cases, including one simulated dataset and three real-world datasets. The results show the proposed method’s ability to identify important variables in all four cases.

利用轴对齐随机投影为部分最小二乘回归选择变量
摘要 在高维数据建模中,变量选择在通过稀疏表示提高预测精度和增强模型可解释性方面起着至关重要的作用。遗憾的是,某些变量选择方法面临着模型稀疏性不足、计算开销大、难以处理大规模数据等挑战。最近,轴对齐随机投影技术被用于通过选择变量来解决这些问题。然而,这些技术在回归框架内处理复杂数据时应用有限。在本研究中,我们提出了一种新方法--通过轴对齐随机投影的稀疏偏最小二乘法,专门用于分析高维数据。首先,利用轴对齐随机投影获得稀疏载荷向量,大大降低了计算复杂度。随后,在排名靠前的重要变量子空间内进行偏最小二乘法回归。对子矩阵进行迭代更新,直到获得最佳稀疏偏最小二乘法模型。与一些最先进的高维回归方法的比较分析表明,所提出的方法具有卓越的预测性能。为了说明该方法的有效性,我们在四个案例中应用了该方法,包括一个模拟数据集和三个实际数据集。结果表明,所提出的方法能够在所有四种情况下识别重要变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信