Simultaneous estimation and variable selection for a non-crossing multiple quantile regression using deep neural networks

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Jungmin Shin, Seunghyun Gwak, Seung Jun Shin, Sungwan Bang
{"title":"Simultaneous estimation and variable selection for a non-crossing multiple quantile regression using deep neural networks","authors":"Jungmin Shin, Seunghyun Gwak, Seung Jun Shin, Sungwan Bang","doi":"10.1007/s11222-024-10418-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present the DNN-NMQR estimator, an approach that utilizes a deep neural network structure to solve multiple quantile regression problems. When estimating multiple quantiles, our approach leverages the structural characteristics of DNN to enhance estimation results by encouraging shared learning across different quantiles through DNN-NMQR. Also, this method effectively addresses quantile crossing issues through the penalization method. To refine our methodology, we introduce a convolution-type quadratic smoothing function, ensuring that the objective function remains differentiable throughout. Furthermore, we provide a brief discussion on the convergence analysis of DNN-NMQR, drawing on the concept of the neural tangent kernel. For a high-dimensional case, we propose the (A)GDNN-NMQR estimator, which applies group-wise <span>\\(L_1\\)</span>-type regularization methods and enjoys the advantages of quantile estimation and variable selection simultaneously. We extensively validate all of our proposed methods through numerical experiments and real data analysis.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"22 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10418-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present the DNN-NMQR estimator, an approach that utilizes a deep neural network structure to solve multiple quantile regression problems. When estimating multiple quantiles, our approach leverages the structural characteristics of DNN to enhance estimation results by encouraging shared learning across different quantiles through DNN-NMQR. Also, this method effectively addresses quantile crossing issues through the penalization method. To refine our methodology, we introduce a convolution-type quadratic smoothing function, ensuring that the objective function remains differentiable throughout. Furthermore, we provide a brief discussion on the convergence analysis of DNN-NMQR, drawing on the concept of the neural tangent kernel. For a high-dimensional case, we propose the (A)GDNN-NMQR estimator, which applies group-wise \(L_1\)-type regularization methods and enjoys the advantages of quantile estimation and variable selection simultaneously. We extensively validate all of our proposed methods through numerical experiments and real data analysis.

Abstract Image

利用深度神经网络实现非交叉多元量级回归的同步估计和变量选择
本文介绍了 DNN-NMQR 估计器,这是一种利用深度神经网络结构解决多重量化回归问题的方法。在估计多个量化值时,我们的方法利用 DNN 的结构特征,通过 DNN-NMQR 鼓励不同量化值之间的共享学习,从而提高估计结果。此外,该方法还通过惩罚方法有效解决了量值交叉问题。为了完善我们的方法,我们引入了卷积型二次平滑函数,确保目标函数始终保持可微分。此外,我们还借鉴神经正切核的概念,简要讨论了 DNN-NMQR 的收敛分析。对于高维情况,我们提出了 (A)GDNN-NMQR 估计器,该估计器应用了群智(L_1\)型正则化方法,同时享有量化估计和变量选择的优势。我们通过数值实验和实际数据分析广泛验证了我们提出的所有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信