Interaction solutions of (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation via bilinear method

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Shuting Bai, Xiaojun Yin, Na Cao, Liyang Xu
{"title":"Interaction solutions of (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation via bilinear method","authors":"Shuting Bai, Xiaojun Yin, Na Cao, Liyang Xu","doi":"10.1142/s0217984924503202","DOIUrl":null,"url":null,"abstract":"<p>Using the bilinear neural network method (BNNM) and the symbolic computation system Mathematica, this paper explains how to find an exact solution for the (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani (KdVSKR) equation. In terms of activation function and weight coefficient, BNNM is a more appealing option for users than traditional symbolic computation methods. It is possible to develop a wide range of solutions and expand the classes of exact solutions by modifying the activation function. The activation function’s versatility allows it to generate a wide range of solutions with several theoretical and practical uses. The analytical solution is obtained by using a double layer type, while the rogue wave solution and mixed solutions are obtained by using a single layer type. The evolution of these waves is then illustrated using various 3D graphs, 2D graphs, and density plots.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"53 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503202","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Using the bilinear neural network method (BNNM) and the symbolic computation system Mathematica, this paper explains how to find an exact solution for the (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani (KdVSKR) equation. In terms of activation function and weight coefficient, BNNM is a more appealing option for users than traditional symbolic computation methods. It is possible to develop a wide range of solutions and expand the classes of exact solutions by modifying the activation function. The activation function’s versatility allows it to generate a wide range of solutions with several theoretical and practical uses. The analytical solution is obtained by using a double layer type, while the rogue wave solution and mixed solutions are obtained by using a single layer type. The evolution of these waves is then illustrated using various 3D graphs, 2D graphs, and density plots.

通过双线性方法求解 (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani 方程的交互解
本文利用双线性神经网络方法(BNNM)和符号计算系统 Mathematica,解释了如何求 (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani (KdVSKR) 方程的精确解。就激活函数和权重系数而言,BNNM 比传统的符号计算方法更能吸引用户。通过修改激活函数,可以开发出多种解法,并扩展精确解法的类别。激活函数的多功能性使其能够生成多种具有理论和实际用途的解。分析解是通过使用双层类型获得的,而流氓波解和混合解则是通过使用单层类型获得的。然后使用各种三维图、二维图和密度图来说明这些波的演变过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信